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Relational Query 
Coprocessing on GPU

adapted from Bingsheng He’s slides “iHPC: Towards 
Pervasive High Performance Computing” and Ram 
Suman Karumuri’s slides on Bingsheng’s “Relational 

Joins on Graphics Processors”* 

* http://www.cs.brown.edu/~suman/slideshows.html

The HPC Market Is Growing

Slight market decrease for 2009, with a strong increase from 2010

Diversifying HPC: It’s Not Just 
for Rocket Scientists Any More*

- Supercomputer (over 512 nodes), Divisional (128-512 nodes), 
Departmental (16-128 nodes), Workgroup (less than 16 nodes).
- HPC continues to be diversifying.

*Source: "High Performance Computing for Dummies”

2 HPC

• HPC@home
o Build your HPC server at 

home

• HPC@cloud
o “Build” your HPC cluster 

in the cloud

Build Your Own HPC Server

Commodity Configuration Price (USD)*

Intel Core2 Duo Q6600 2.66G Hz*4 429.95

NVIDIA GTX 280 GPU 1.3G Hz *240 269.99 

Intel X25-M 80GB 2.5” 35 thousand (4K reads) 429.95

Parallelism boosts the hardware capability. 

Challenges in software: programming and performance.

*Source: www.amazon.com, sept-21-2009

GPU: A Powerful Co-processor

Device memory

GPU

CPU

Main
memory

P1 P2 Pn

Multiprocessor 1

Local memory

P1 P2 Pn

Multiprocessor N

Local memory

PCI-E

• 240 scalar processors on NV GTX 280
• ~1 TFLOPS of peak performance

http://images.google.cn/imgres?imgurl=http://www.jahong.com.tw/ezcatfiles/jahong/img/img/5151/280NVIDIA.jpg&imgrefurl=http://www.jahong.com.tw/front/bin/ptdetail.phtml%3FPart%3DNVIDIAGTX280&usg=__WJPr5F4Hw71cPJxis9ESoUYqS70=&h=452&w=461&sz=55&hl=zh-CN&start=46&tbnid=7Zqq1LS1PeDPGM:&tbnh=126&tbnw=128&prev=/images%3Fq%3DGPU%2B280%26gbv%3D2%26ndsp%3D18%26hl%3Dzh-CN%26sa%3DN%26start%3D36%26newwindow%3D1
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GPU: A Powerful Co-processor
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• 10+x more than peak bandwidth of the main memory
• 142 GB/s, 1 GB GDDR3 memory on GTX280

GPUs

• High latency GDDR memory
o 200-400 clock cycles of latency
o Latency hiding using large number of 

concurrent threads (>8K on GTX GPU)
o Each thread has a small state – low context-

switch overhead

• Better architectural support for memory 
o Inter-processor communication using a local 

memory
o Coalesced access

Local Memory Optimization

• temporal locality

Data accesses in the bitonic sort on GPU with local mem opt *

with coalesced accesses

* Bingsheng He,etc: Relational joins on graphics processors. 

SIGMOD Conference 2008: 511-524

Coalesced Access

• Boost bandwidth utilization (spatial locality)

Maps with and without coalesced accesses*

* Bingsheng He, etc: Relational joins on graphics processors. SIGMOD Conference 2008: 511-524

Coalesced Access

(1) Bp=16, T=32,
(2) w/o local memory opt.

Challenges for GPUQP

• Programming difficulty
• How to exploit the hardware feature of 

the GPU
o High thread parallelism
o Memory features

• Lack hardware support for handling 
read/write conflicts

• Load balancing
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Solution

• Primitive-based approach
o Basic operations as building blocks for high-

level operations.
o Easier to optimize than complicated 

operations/applications.

• Skew handling
• Lock free design for many-core features

The Infrastructure of 
HPC@home using GPUs

Web 
Analysis

Data 
Mining

GPUQP 
(DB)

Mars (MapReduce)

Primitives

Programming framework (CUDA)

Graphics Processors

Outline

• HPC@home
o Primitives
o Engines
GPUQP

• Conclusions and Future Work

Primitives

Primitives Primitives
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Primitives

http://en.wikipedia.org/wiki/Prefix_sum

Primitives

Primitives Sort

• Bitonic sort
– Uses sorting networks, O(N log2N)

• Quick sort
– partition using a random pivot until partition fits in local 

memory
– Sort each partition using bitonic sort
– Partioning can be parallelized using split
– Complexity is O(N log N)
– 30% faster than bitonic sort in experiments
– GPUQP uses Quick sort for sorting

Reduce

• Primitive: Reduce

• Input: Rin[1, . . . , n], a reduce function

• Output: Rout [1]

• Function:

One pass of the reduce primitive

Filter

• Primitive: Filter

• Input: 

– Rin[1, . . . , n], 

– a filter function  fcn(Rin [i] )  

• Output: Rout [1]

• Function:

{0,1}, [1, ]i n 
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Split

• A lock-free algorithm
o Each thread is responsible for a portion of 

the input.
o Each thread computes its local histogram. 
o Given the local histograms, we compute the 

write locations for each thread.
o Each thread writes the tuples to the output 

in parallel. 
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Optimizing Primitives

• Thread parallelism
o Parallelism among different 

multiprocessors.
o Resource utilization within a multiprocessor.

• Memory optimizations
o Coalesced access for spatial locality.
o Local memory optimization for temporal 

locality.

Experimental Setup

• Implementation
o CPU: OpenMP
o GPU: CUDA 

CMP (P4 Quad) GPU (NV G80)

Processors (HZ) 2.66G*4 1.35G*128

Cache size 8MB 256KB

Bandwidth
(GB/sec)

10.4 86.4

Thread Parallelism
(Varying #thread groups)

(1) T=32, 
(2) w/ coalesced accesses, 
(3) w/o local memory opt.

Thread Parallelism
(Varying #thread/group)

(1) Suitable Bp,
(2) w/ coalesced accesses. 

Performance Impact of 
Optimization Techniques

• Coalesced access improves the 
memory bandwidth by twice.

• Performance improvements of thread 
parallelism depend on the 
computation/memory characteristics 
(30%- 4X)

• Local memory optimization improves 
split and sort by twice.

• Primitives : 2~27x

Outline

• HPC@home
o Primitives
o Engines
GPUQP

• Conclusions and Future Work
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GPUQP

• The first full-fledged relational query 
processor on the GPU

Cost 
optimizer

Built on top of 
optimized primitives

Estimation on memory and 
computation costs

Joins

• Non-indexed nested-loop join (NINLJ)
• Indexed nested-loop join (INLJ)

o Adopt CSS-Tree [Rao99]

• Sort-merge join (SMJ)
• Hash join (HJ)

o Adopt radix join [Boncz99]

B+ Tree vs. CSS Tree

• B+ tree imposes Memory stalls when traversed 

(no spatial locality)

– Can’t perform multiple searches ( loses temporal 

locality).

• CSS-Tree (Cache optimized search tree)

– One dimensional array where nodes are indexed.

– Replaces traversal with computation.

– Can also perform parallel key lookups.

A Lock-Free Scheme for 
Result Output 

• Three steps:
o Each thread counts the number of join 

results for the partitioned join.
o Prefix sum for write locations for each 

thread and the total number of join results. 
o Each thread outputs the join results in 

parallel. 

Hash Join

• Hash join: HJ (R, S)
o Split R, S into the same number of partitions 

using radix bits so that most S partitions fit into 
the local memory
=> Skew handling: Identify the partitions that 
do not fit into the local memory, and continue 
split
=> A join is decomposed into many small joins.

o Multiple small joins are evaluated in parallel.

Skew Handling in HJ

• Identify the partitions that do not fit into 
the local memory.
o Given an array storing partition sizes, we 

split it into two groups.
 Partitions larger than the local memory
 Partitions not larger than the local memory

• Decompose each of the large partitions 
into multiple small chunks.
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Joins (Cont’)
Experimental Results on Join 
Queries

Joins CPU (sec)GPU(sec) Speedup

NINLJ 528.0 75.0 7.0

INLJ 4.2 0.7 6.1

SMJ 5.0 2.0 2.4

HJ 2.5 1.3 1.9

• In-memory databases
• The GPU measurements include the time for data transfer between 

the GPU memory and the main memory. 
• Tuple size=8 B, NINLJ (1million by one million), other joins (16 million 

by 16 million)

Cost Estimation for GPU Estimating Tcomputation

• measure unit cost

TPC-H Results on Memory-
Resident Data

SF=1 Q1 (sec) Q3 (sec)

DBMS X 14.0 3.8

CPU 1.01 0.79

GPUQP 0.89 0.66

• SF=1, working set=1 GB; warmed buffer.
• Both CPU and GPUQP outperforms DBMS X over 4.7 times.
• GPUQP is 13-20% faster than CPU-based engine.

Performance

• CPU & GDB engines outperform DBMS X by 

over 13.8times and 3.5 times @SF = 1/10

• overall performance of GDB

– slightly faster than the CPU-based engine

– disk I/O time contributes 98% to the total

execution time when SF = 10

• GPU-based algorithms are poor

• poor for simple query: data transfer between main/device mem

• Faster for complex queries: insignificant data transfer



3/4/2010

9

Performance (Cont’)

• GDB

– significantly cool on memory-resident data

• Primitives & query processing algorithms 2–27x over 

optimized CPU-based counterparts

• C/GPU data transfer included

– 2–7x complex queries such as joins

– 2–4x slower for simple queries such as selections

– comparable to optimized CPU-based engine on disk-

based data: on TPC-H with data sets larger than mem

• GPU coprocessing reduces the computation time up to 23%

• Overall improvement is insignificant: disk I/O bottleneck

Conclusion

• The GPU has much higher computation 
power and memory bandwidth than the 
CPU.

• Highly-optimized primitives as building 
blocks is practical for high-level 
applications. 

• GPU-based primitives are 2-27x faster 
than their CPU-based counterparts.

Future Work

• Compression to reduce main/G 
memory data transfer overhead

• Multi-GPU processing
• New memory techniques

– Jim Gray: “flash is disk, disk is tape and tape is dead“

– Faster memory

• PCM, MEMS

• Design efficient data structures and algorithms on new 
memories

• Re-design file systems


