
3/4/2010

1

Relational Query
Coprocessing on GPU

adapted from Bingsheng He’s slides “iHPC: Towards
Pervasive High Performance Computing” and Ram
Suman Karumuri’s slides on Bingsheng’s “Relational

Joins on Graphics Processors”*

* http://www.cs.brown.edu/~suman/slideshows.html

The HPC Market Is Growing

Slight market decrease for 2009, with a strong increase from 2010

Diversifying HPC: It’s Not Just
for Rocket Scientists Any More*

- Supercomputer (over 512 nodes), Divisional (128-512 nodes),
Departmental (16-128 nodes), Workgroup (less than 16 nodes).
- HPC continues to be diversifying.

*Source: "High Performance Computing for Dummies”

2 HPC

• HPC@home
o Build your HPC server at

home

• HPC@cloud
o “Build” your HPC cluster

in the cloud

Build Your Own HPC Server

Commodity Configuration Price (USD)*

Intel Core2 Duo Q6600 2.66G Hz*4 429.95

NVIDIA GTX 280 GPU 1.3G Hz *240 269.99

Intel X25-M 80GB 2.5” 35 thousand (4K reads) 429.95

Parallelism boosts the hardware capability.

Challenges in software: programming and performance.

*Source: www.amazon.com, sept-21-2009

GPU: A Powerful Co-processor

Device memory

GPU

CPU

Main
memory

P1 P2 Pn

Multiprocessor 1

Local memory

P1 P2 Pn

Multiprocessor N

Local memory

PCI-E

• 240 scalar processors on NV GTX 280
• ~1 TFLOPS of peak performance

http://images.google.cn/imgres?imgurl=http://www.jahong.com.tw/ezcatfiles/jahong/img/img/5151/280NVIDIA.jpg&imgrefurl=http://www.jahong.com.tw/front/bin/ptdetail.phtml%3FPart%3DNVIDIAGTX280&usg=__WJPr5F4Hw71cPJxis9ESoUYqS70=&h=452&w=461&sz=55&hl=zh-CN&start=46&tbnid=7Zqq1LS1PeDPGM:&tbnh=126&tbnw=128&prev=/images%3Fq%3DGPU%2B280%26gbv%3D2%26ndsp%3D18%26hl%3Dzh-CN%26sa%3DN%26start%3D36%26newwindow%3D1

3/4/2010

2

GPU: A Powerful Co-processor

Device memory

GPU

CPU

Main
memory

P1 P2 Pn

Multiprocessor 1

Local memory

P1 P2 Pn

Multiprocessor N

Local memory

PCI-E

• 10+x more than peak bandwidth of the main memory
• 142 GB/s, 1 GB GDDR3 memory on GTX280

GPUs

• High latency GDDR memory
o 200-400 clock cycles of latency
o Latency hiding using large number of

concurrent threads (>8K on GTX GPU)
o Each thread has a small state – low context-

switch overhead

• Better architectural support for memory
o Inter-processor communication using a local

memory
o Coalesced access

Local Memory Optimization

• temporal locality

Data accesses in the bitonic sort on GPU with local mem opt *

with coalesced accesses

* Bingsheng He,etc: Relational joins on graphics processors.

SIGMOD Conference 2008: 511-524

Coalesced Access

• Boost bandwidth utilization (spatial locality)

Maps with and without coalesced accesses*

* Bingsheng He, etc: Relational joins on graphics processors. SIGMOD Conference 2008: 511-524

Coalesced Access

(1) Bp=16, T=32,
(2) w/o local memory opt.

Challenges for GPUQP

• Programming difficulty
• How to exploit the hardware feature of

the GPU
o High thread parallelism
o Memory features

• Lack hardware support for handling
read/write conflicts

• Load balancing

3/4/2010

3

Solution

• Primitive-based approach
o Basic operations as building blocks for high-

level operations.
o Easier to optimize than complicated

operations/applications.

• Skew handling
• Lock free design for many-core features

The Infrastructure of
HPC@home using GPUs

Web
Analysis

Data
Mining

GPUQP
(DB)

Mars (MapReduce)

Primitives

Programming framework (CUDA)

Graphics Processors

Outline

• HPC@home
o Primitives
o Engines
GPUQP

• Conclusions and Future Work

Primitives

Primitives Primitives

3/4/2010

4

Primitives

http://en.wikipedia.org/wiki/Prefix_sum

Primitives

Primitives Sort

• Bitonic sort
– Uses sorting networks, O(N log2N)

• Quick sort
– partition using a random pivot until partition fits in local

memory
– Sort each partition using bitonic sort
– Partioning can be parallelized using split
– Complexity is O(N log N)
– 30% faster than bitonic sort in experiments
– GPUQP uses Quick sort for sorting

Reduce

• Primitive: Reduce

• Input: Rin[1, . . . , n], a reduce function

• Output: Rout [1]

• Function:

One pass of the reduce primitive

Filter

• Primitive: Filter

• Input:

– Rin[1, . . . , n],

– a filter function fcn(Rin [i])

• Output: Rout [1]

• Function:

{0,1}, [1,]i n 

3/4/2010

5

Split

• A lock-free algorithm
o Each thread is responsible for a portion of

the input.
o Each thread computes its local histogram.
o Given the local histograms, we compute the

write locations for each thread.
o Each thread writes the tuples to the output

in parallel.

p1 p2 p1 p1

Coalesced

In the local memory

Split

p2 p2 p1 p2

T1 T2 T3 T4

Step (1), count
(Map)

0
0

0
0

0
0

0
0

tHist

Rin

For partition
1
For partition
2

1
1

0
2

2
0

1
1

Split (Rin[1,…, 8], fcn, Rout[1,…,8]), fcn(x)=x mod 2+1

Split

Step (1), count
(Map)

1
1

0
2

2
0

1
1

tHist

Rin

L
1 0 2 1 1 2 0 1Step (2), output

Counts
(Scatter)

For partition
1
For partition
2

1 2 1 12 2 1 2

T1 T2 T3 T4

Coalesced

Split

Step (1),
count

1
1

0
2

2
0

1
1

tHist

Step (3),
prefix
sum

Rin

L
1 0 2 1 1 2 0 1

0 1 1 3 4 5 7 7

L

Step (2),
output
counts

For partition
1
For partition
2

1 2 1 12 2 1 2

T1 T2 T3 T4

0 4

Split

Step (1),
count

1
1

0
2

2
0

1
1

tHist

Step (3),
prefix
sum

Step (4), load
Counts
(Gather)

Rin

L
1 0 2 1 1 2 0 1

0 1 1 3 4 5 7 7

L

0
4

1
5

1
7

3
7

tOffset

Step (2),
output
counts

For partition
1
For partition
2

For partition
1
For partition
2

1 2 1 12 2 1 2

T1 T2 T3 T4

Split

Step (1), count
(Map) 1

1

0
2

2
0

1
1

tHist

Step (3), prefix
sum

Step (4), load
Counts (Gather)

Rin

Rout
1 1 1 1 2 2 2 2

L
1 0 2 1 1 2 0 1

0 1 1 3 4 5 7 7

L

0
4

1
5

1
7

3
7Rin

tOffset

Step (2), output
Counts (Scatter)

Step (5), scatter

For partition
1
For partition
2

For partition
1
For partition
2

1 2 1 12 2 1 2

T1 T2 T3 T4

1 2 1 12 2 1 2

3/4/2010

6

Optimizing Primitives

• Thread parallelism
o Parallelism among different

multiprocessors.
o Resource utilization within a multiprocessor.

• Memory optimizations
o Coalesced access for spatial locality.
o Local memory optimization for temporal

locality.

Experimental Setup

• Implementation
o CPU: OpenMP
o GPU: CUDA

CMP (P4 Quad) GPU (NV G80)

Processors (HZ) 2.66G*4 1.35G*128

Cache size 8MB 256KB

Bandwidth
(GB/sec)

10.4 86.4

Thread Parallelism
(Varying #thread groups)

(1) T=32,
(2) w/ coalesced accesses,
(3) w/o local memory opt.

Thread Parallelism
(Varying #thread/group)

(1) Suitable Bp,
(2) w/ coalesced accesses.

Performance Impact of
Optimization Techniques

• Coalesced access improves the
memory bandwidth by twice.

• Performance improvements of thread
parallelism depend on the
computation/memory characteristics
(30%- 4X)

• Local memory optimization improves
split and sort by twice.

• Primitives : 2~27x

Outline

• HPC@home
o Primitives
o Engines
GPUQP

• Conclusions and Future Work

3/4/2010

7

GPUQP

• The first full-fledged relational query
processor on the GPU

Cost
optimizer

Built on top of
optimized primitives

Estimation on memory and
computation costs

Joins

• Non-indexed nested-loop join (NINLJ)
• Indexed nested-loop join (INLJ)

o Adopt CSS-Tree [Rao99]

• Sort-merge join (SMJ)
• Hash join (HJ)

o Adopt radix join [Boncz99]

B+ Tree vs. CSS Tree

• B+ tree imposes Memory stalls when traversed

(no spatial locality)

– Can’t perform multiple searches (loses temporal

locality).

• CSS-Tree (Cache optimized search tree)

– One dimensional array where nodes are indexed.

– Replaces traversal with computation.

– Can also perform parallel key lookups.

A Lock-Free Scheme for
Result Output

• Three steps:
o Each thread counts the number of join

results for the partitioned join.
o Prefix sum for write locations for each

thread and the total number of join results.
o Each thread outputs the join results in

parallel.

Hash Join

• Hash join: HJ (R, S)
o Split R, S into the same number of partitions

using radix bits so that most S partitions fit into
the local memory
=> Skew handling: Identify the partitions that
do not fit into the local memory, and continue
split
=> A join is decomposed into many small joins.

o Multiple small joins are evaluated in parallel.

Skew Handling in HJ

• Identify the partitions that do not fit into
the local memory.
o Given an array storing partition sizes, we

split it into two groups.
 Partitions larger than the local memory
 Partitions not larger than the local memory

• Decompose each of the large partitions
into multiple small chunks.

3/4/2010

8

Joins (Cont’)
Experimental Results on Join
Queries

Joins CPU (sec)GPU(sec) Speedup

NINLJ 528.0 75.0 7.0

INLJ 4.2 0.7 6.1

SMJ 5.0 2.0 2.4

HJ 2.5 1.3 1.9

• In-memory databases
• The GPU measurements include the time for data transfer between

the GPU memory and the main memory.
• Tuple size=8 B, NINLJ (1million by one million), other joins (16 million

by 16 million)

Cost Estimation for GPU Estimating Tcomputation

• measure unit cost

TPC-H Results on Memory-
Resident Data

SF=1 Q1 (sec) Q3 (sec)

DBMS X 14.0 3.8

CPU 1.01 0.79

GPUQP 0.89 0.66

• SF=1, working set=1 GB; warmed buffer.
• Both CPU and GPUQP outperforms DBMS X over 4.7 times.
• GPUQP is 13-20% faster than CPU-based engine.

Performance

• CPU & GDB engines outperform DBMS X by

over 13.8times and 3.5 times @SF = 1/10

• overall performance of GDB

– slightly faster than the CPU-based engine

– disk I/O time contributes 98% to the total

execution time when SF = 10

• GPU-based algorithms are poor

• poor for simple query: data transfer between main/device mem

• Faster for complex queries: insignificant data transfer

3/4/2010

9

Performance (Cont’)

• GDB

– significantly cool on memory-resident data

• Primitives & query processing algorithms 2–27x over

optimized CPU-based counterparts

• C/GPU data transfer included

– 2–7x complex queries such as joins

– 2–4x slower for simple queries such as selections

– comparable to optimized CPU-based engine on disk-

based data: on TPC-H with data sets larger than mem

• GPU coprocessing reduces the computation time up to 23%

• Overall improvement is insignificant: disk I/O bottleneck

Conclusion

• The GPU has much higher computation
power and memory bandwidth than the
CPU.

• Highly-optimized primitives as building
blocks is practical for high-level
applications.

• GPU-based primitives are 2-27x faster
than their CPU-based counterparts.

Future Work

• Compression to reduce main/G
memory data transfer overhead

• Multi-GPU processing
• New memory techniques

– Jim Gray: “flash is disk, disk is tape and tape is dead“

– Faster memory

• PCM, MEMS

• Design efficient data structures and algorithms on new
memories

• Re-design file systems

