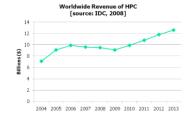
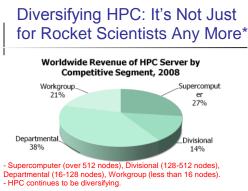
Relational Query Coprocessing on GPU

adapted from Bingsheng He's slides "iHPC: Towards Pervasive High Performance Computing" and Ram Suman Karumuri's slides on Bingsheng's "Relational Joins on Graphics Processors"*

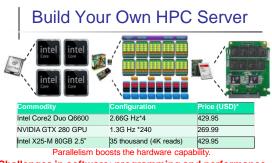
* http://www.cs.brown.edu/~suman/slideshows.html



Slight market decrease for 2009, with a strong increase from 2010



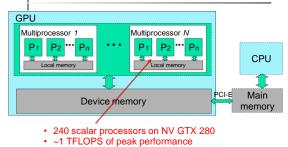
*Source: "High Performance Computing for Dummies"



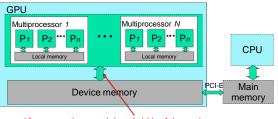
Challenges in software: programming and performance.

*Source: www.amazon.com, sept-21-2009

GPU: A Powerful Co-processor



GPU: A Powerful Co-processor

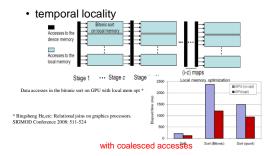


10+x more than peak bandwidth of the main memory
142 GB/s, 1 GB GDDR3 memory on GTX280

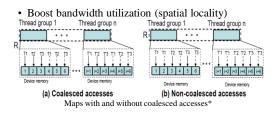
GPUs

- High latency GDDR memory
 - 200-400 clock cycles of latency
 Latency hiding using large number of
 - concurrent threads (>8K on GTX GPU)
 - Each thread has a small state low contextswitch overhead
- Better architectural support for memory
 - Inter-processor communication using a local memory
 - Coalesced access

Local Memory Optimization

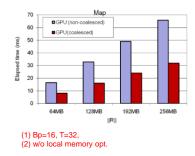


Coalesced Access



* Bingsheng He, etc: Relational joins on graphics processors. SIGMOD Conference 2008: 511-524

Coalesced Access



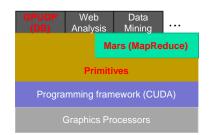
Challenges for GPUQP

- · Programming difficulty
- How to exploit the hardware feature of the GPU
 - $_{\circ}$ High thread parallelism
 - Memory features
- Lack hardware support for handling read/write conflicts
- Load balancing

Solution

- · Primitive-based approach
 - o Basic operations as building blocks for highlevel operations.
 - o Easier to optimize than complicated operations/applications.
- Skew handling
- · Lock free design for many-core features

The Infrastructure of HPC@home using GPUs



Outline

HPC@home

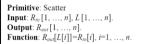
- o Primitives
- GPUQP
- · Conclusions and Future Work

Primitives

Primitive: Map **Input**: $R_{in}[1, ..., n]$, a map function *fcn*. **Output**: $R_{out}[1,...,n]$. Function: $R_{out}[i] = fcn(R_{in}[i])$.

Primitives

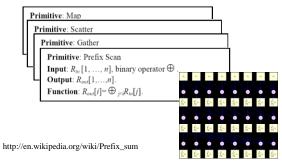
Primitive: Map



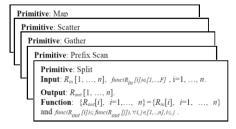
Primitives

- Primitive: Scatter
- Primitive: Gather
- **Input:** $R_{in}[1, ..., n], L[1, ..., n].$ **Output:** $R_{our}[1, ..., n].$ **Function:** $R_{our}[i]=R_{in}[L[i]], i=1, ..., n.$

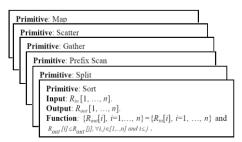
Primitives



Primitives



Primitives

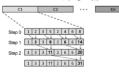


Sort

- Bitonic sort
- Uses sorting networks, O(N log²N)
- Quick sort
 - partition using a random pivot until partition fits in local . memory
 - Sort each partition using bitonic sort _
 - Partioning can be parallelized using split
 - Complexity is O(N log N)
 - 30% faster than bitonic sort in experiments
 - GPUQP uses Quick sort for sorting

Reduce

- · Primitive: Reduce
- Input: $R_{in}[1, \ldots, n]$, a reduce function \bigcirc
- Output: *R*_{out}[1]
- Function: $R_{out}[1] = \bigoplus_{i=1}^{n} R_{in}[i]$



One pass of the reduce primitive

Filter

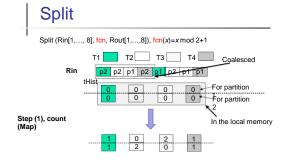
- Primitive: Filter
- Input:

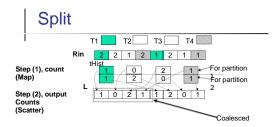
 $-R_{in}[1,\ldots,n],$

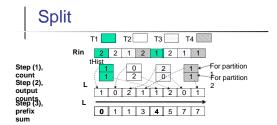
- a filter function $fcn(R_{in}[i]) \in \{0,1\}, i \in [1,n]$
- Output: R_{out} [1] Function: $[R_{out}[i], i \in [1, n']] = [R_{in}[i]] fcn(R_{in}[i]) = 1, i \in [1, n]]$

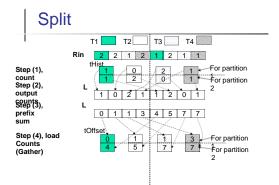
Split

- A lock-free algorithm
 - Each thread is responsible for a portion of the input.
 - Each thread computes its local histogram.
 - Given the local histograms, we compute the write locations for each thread.
 - $_{\odot}$ Each thread writes the tuples to the output in parallel.









Split T1 T2 Т3 Т4 Rin 2 2 1 2 1 2 1 1 Step (1), count (Map) tΗ For partition For partition Step (2), output L 2 2 1 1 2 0 1 Counts (Scatter) Ó 1 Step (3), prefix L sum 0 1 1 3 4 5 7 7 tOffset Step (4), load For partition 3 Counts (Gather) 5 7 • 7 \$ For partition Rin 1 2 1 1 2 2 2 1 2 Step (5), scatte Rout

Optimizing Primitives

- Thread parallelism
 - o Parallelism among different
 - multiprocessors.
 - $_{\circ}$ Resource utilization within a multiprocessor.
- Memory optimizations
 - $_{\circ}$ Coalesced access for spatial locality.
 - Local memory optimization for temporal locality.

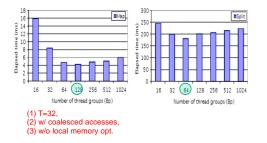
Experimental Setup

- Implementation

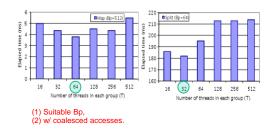
 CPU: OpenMP
 - ∘ GPU: CUDA

	CMP (P4 Quad)	GPU (NV G80)
Processors (HZ)	2.66G*4	1.35G*128
Cache size	8MB	256KB
Bandwidth (GB/sec)	10.4	86.4

Thread Parallelism (Varying #thread groups)



Thread Parallelism (Varying #thread/group)



Performance Impact of Optimization Techniques

- Coalesced access improves the memory bandwidth by twice.
- Performance improvements of thread parallelism depend on the computation/memory characteristics (30%- 4X)
- Local memory optimization improves *split* and *sort* by twice.
- Primitives : 2~27x

Outline

- HPC@home
 - Primitives
 - Engines
 GPUQP
- Conclusions and Future Work

GPUQP

 The *first* full-fledged relational query processor on the GPU
 Estimation on memory an computation costs

Operators (Selection, projection, join,

Access methods (scan, B+-tree and hash index)

Primitives (map, filter, split etc.)

Relations

Indexes

Cost optimizer

sort, aggregation etc.)

Joins

- Non-indexed nested-loop join (NINLJ)
- Indexed nested-loop join (INLJ)

 Adopt CSS-Tree [Rao99]
- Sort-merge join (SMJ)
- Hash join (HJ)
 - Adopt radix join [Boncz99]

B+ Tree vs. CSS Tree

Storage

- B+ tree imposes Memory stalls when traversed (no spatial locality)
 - Can't perform multiple searches (loses temporal locality).
- CSS-Tree (Cache optimized search tree)
 - One dimensional array where nodes are indexed.
 - Replaces traversal with computation.
 - Can also perform parallel key lookups.

A Lock-Free Scheme for Result Output

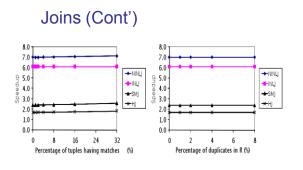
- · Three steps:
 - Each thread **counts** the number of join results for the partitioned join.
 - Prefix sum for write locations for each thread and the total number of join results.
 - Each thread outputs the join results in parallel.

Hash Join

- Hash join: HJ (R, S)
 - Split R, S into the same number of partitions using radix bits so that most S partitions fit into the local memory
 - => Skew handling: Identify the partitions that do not fit into the local memory, and continue split
 - => A join is decomposed into many small joins. • Multiple small joins are evaluated in parallel.

Skew Handling in HJ

- Identify the partitions that do not fit into the local memory.
 - Given an array storing partition sizes, we split it into two groups.
 - Partitions larger than the local memory
 Partitions not larger than the local memory
- Decompose each of the large partitions into multiple small chunks.



Experimental Results on Join Queries

Joins	CPU (sec)	GPU(sec)	Speedup
NINLJ	528.0	75.0	7.0
INLJ	4.2	0.7	6.1
SMJ	5.0	2.0	2.4
HJ	2.5	1.3	1.9

In-memory databases

The GPU measurements **include** the time for data transfer between the GPU memory and the main memory.

 Tuple size=8 B, NINLJ (1million by one million), other joins (16 million by 16 million)

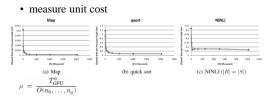
Cost Estimation for GPU

 $T_{overall} \; = \; T_{mm_dm}(I) + T_{GPU} + T_{dm_mm}(O)$

 $T_{GPU} = T_{Mem} + T_{computation}$

 $T_{mm \perp dm}(x) = T_0 + \frac{x}{Band}$

Estimating T_{computation}



 $T_{computation} = \mu \cdot O(N_1, \dots, N_q)$

TPC-H Results on Memory-Resident Data

SF=1	Q1 (sec)	Q3 (sec)
DBMS X	14.0	3.8
CPU	1.01	0.79
GPUQP	0.89	0.66

• SF=1, working set=1 GB; warmed buffer.

- · Both CPU and GPUQP outperforms DBMS X over 4.7 times.
- GPUQP is 13-20% faster than CPU-based engine.

Performance

- CPU & GDB engines outperform DBMS X by over 13.8times and 3.5 times @SF = 1/10
- · overall performance of GDB
 - slightly faster than the CPU-based engine
 - disk I/O time contributes 98% to the total execution time when SF = 10
- · GPU-based algorithms are poor
 - poor for simple query: data transfer between main/device mem
 - · Faster for complex queries: insignificant data transfer

Performance (Cont')

- GDB
 - significantly cool on memory-resident data
 - Primitives & query processing algorithms 2–27x over optimized CPU-based counterparts
 - C/GPU data transfer included
 - 2-7x complex queries such as joins
 - 2-4x slower for simple queries such as selections
 - comparable to optimized CPU-based engine on disk-
 - based data: on TPC-H with data sets larger than mem
 - GPU coprocessing reduces the computation time up to 23%Overall improvement is insignificant: disk I/O bottleneck

Conclusion

- The GPU has much higher computation power and memory bandwidth than the CPU.
- Highly-optimized primitives as building blocks is practical for high-level applications.
- GPU-based primitives are 2-27x faster than their CPU-based counterparts.

Future Work

- Compression to reduce main/G memory data transfer overhead
- Multi-GPU processing
- · New memory techniques
 - Jim Gray: "flash is disk, disk is tape and tape is dead"
 - Faster memory
 - PCM, MEMS
 - Design efficient data structures and algorithms on new memories
 - · Re-design file systems