Relational Query
Coprocessing on GPU

adapted from Bingsheng He's slides “iHPC: Towards

Pervasive High Performance Computing” and Ram

Suman Karumuri’s slides on Bingsheng’s “Relational
Joins on Graphics Processors”™

Diversifying HPC: It's Not Just
for Rocket Scientists Any More*

Worldwide Revenue of HPC Server by

Competitive Segment, 2008
Workgroup. Supercomput
2% er
27%
Departmental Divisional
38% 14%

- Supercomputer (over 512 nodes), Divisional (128-512 nodes),
Departmental (16-128 nodes), Workgroup (less than 16 nodes).
- HPC continues to be diversifying.

*Source: "High Performance Computing for Dummies”

| Build Your Own HPC Server

El

oo e S e e LT
Intel Core2 Duo Q6600 2.66G Hz*4 429.95

NVIDIA GTX 280 GPU 1.3G Hz *240 269.99
‘Intel X25-M 80GB 2.5” 35 thousand (4K reads) 29.95
Parallelism boosts the hardware capability.
Challenges in software: programming and performance.
*Source: , sept-21-2009

3/4/2010

| The HPC Market Is Growing

Billions ($)

Worldwide Revenue of HPC
[source: IDC, 2008]

2004 2005 2006 2007 2008 2009 2010 2011 2012 2013

Slight market decrease for 2009, with a strong increase from 2010

2 HPC

+ HPC@home éf..ﬁﬁ,?
o Build your HPC server at
home
« HPC@cloud = ‘
o “Build” your HPC cluster Google
in the cloud e @
o R
| GPU: A Powerful Co-processor

Multiprocessor 1

Multiprocessor N

» 240 scalar processors on NV GTX 280
* ~1 TFLOPS of peak performance

http://images.google.cn/imgres?imgurl=http://www.jahong.com.tw/ezcatfiles/jahong/img/img/5151/280NVIDIA.jpg&imgrefurl=http://www.jahong.com.tw/front/bin/ptdetail.phtml%3FPart%3DNVIDIAGTX280&usg=__WJPr5F4Hw71cPJxis9ESoUYqS70=&h=452&w=461&sz=55&hl=zh-CN&start=46&tbnid=7Zqq1LS1PeDPGM:&tbnh=126&tbnw=128&prev=/images%3Fq%3DGPU%2B280%26gbv%3D2%26ndsp%3D18%26hl%3Dzh-CN%26sa%3DN%26start%3D36%26newwindow%3D1

GPU: A Powerful Co-processor

GPU

Multiprocessor 1

Multiprocessor N

L cPU

Local memory Local memory |
: PC-E Main

Ko i

Device m%w * memory

» 10+x more than peak bandwidth of the main memory
* 142 GB/s, 1 GB GDDR3 memory on GTX280

Local Memory Optimization

 temporal locality

-
Acoasses o e
davce memory fi—]

=
Accesses o he
focal memory

. (] maps
Stage e Stagec Sge’ Lo ey optmizaton

Data accesses in the bitonic sort on GPU with local mem opt *

!
g
* Bingsheng He etc: Relational joins on graphics processors. E 10c0 |
SIGMOD Conference 2008: 511-524 i
o |
P Y

Coalesced Access

70 Map
w0 BGPU (non-coalesced)
@GPU|coalesced)
g 50
g a0
3
£
2 20
ol
o .
54MB 128MB 19218 256ME
IRl

(1) Bp=16, T=32,
(2) wlo local memory opt.

GPUs

I« High latency GDDR memory

o 200-400 clock cycles of latency

o Latency hiding using large number of
concurrent threads (>8K on GTX GPU)

o Each thread has a small state — low context-
switch overhead

* Better architectural support for memory

o Inter-processor communication using a local
memory

o Coalesced access

Coalesced Access

» Boost bandwidth utilization (spatial locality)

Thread group 1 Thread group n Thread goup® Thread groupn
i ! R oo] |
R I

MR BT P MR TR T

ST irr
I 4 1 I 3 R 1 3 1 5)

Doz memcry Doz mercry Devce memary Device memory
(a) Coalesced accesses (b) Non-coalesced accesses
Maps with and without coalesced accesses™

*Bingsheng He, etc: Relational joins on graphics processors. SIGMOD Conference 2008: 511-524

Challenges for GRUQP

* Programming difficulty

* How to exploit the hardware feature of
the GPU
o High thread parallelism
o Memory features

* Lack hardware support for handling
read/write conflicts

* Load balancing

3/4/2010

Solution

* Primitive-based approach
o Basic operations as building blocks for high-
level operations.
o Easier to optimize than complicated
operations/applications.
« Skew handling
* Lock free design for many-core features

Outline

« HPC@home

o Primitives

Primitives

Primitive: Map I

Primitive: Scatter

Input: R, [1, ...l L[1, ... 0]
Output: R, [1.n].

Function: R, [L[i]]=R.[7].i=1.n.

3/4/2010

The Infrastructure of
| HPC@home using GPUs

Web Data
Analysis Mining

Programming framework (CUDA)

Graphics Processors

Primitives

Primitive: Map

Input: R, [1. n], a map function fen.
Output: R, [1.....«].

Function: R, [7]=fcn(R,,[1]).

Primitives

Primitive: Map |

Primitive: Scatter |

Primitive: Gather

Input: R, [1.....»n]. L[1.....¢].
Output: R, [1. ... %]

Function: R,.[1]=R,[L[i]].=1.n.

Primitives

Primitive: Map

Primitive: Scatter

Primitive: Gather

Primitive: Prefix Scan

Input: R, [1. ... n]. binary operator &
Output: R, [1.....1]

Function: R, [i]= @ .R.[/)

http://en.wikipedia.org/wiki/Prefix_sum

Primitives

Primitive: Map

Primitive: Scatter

Primitive: Gather

Primitive: Prefix Scan

Primitive: Split

Primitive: Sort

Input: R, [1.....»].
Output: R, [1. ... n].
Function: {R,,

RUHF fj<x

[, %0 je[1,.n] and i< .
g U0, (L] and i<

i), =l ny={R,[i]. i=1. ...

n} and

Reduce

* Primitive: Reduce

* Input: R[4, .. ., n], a reduce function ©
« Output: Ry, [1]

* Function: R, [1]1 = (O}, R;,li]

I — — e RPN -

sopo [ZEEIZETE]E)
sep1 (I35 [8 316614
sop2 O] 120
GEEmleelelsy
One pass of the reduce primitive

3/4/2010

Primitives

Primitive: Map |

Primitive: Scatter |

Primitive: Gather ‘

Primitive: Prefix Scan |

Primitive: Split

Input: R, [1. ... n], fimeiRy, Ji] Fj =1 n
Output: R, [1. ... 7]
Function: {R,.[i]. ~=1..... n}={R,[i]. i=l, ... n}

and fineR,,, [if)< fune(®
ont o

Sort

* Bitonic sort
— Uses sorting networks, O(N log2N)
* Quick sort
— partition using a random pivot until partition fits in local
memory
— Sort each partition using bitonic sort
— Partioning can be parallelized using split
— Complexity is O(N log N)
— 30% faster than bitonic sort in experiments
— GPUQP uses Quick sort for sorting

Filter

« Primitive: Filter
* Input:

—Ri[1,...,n],

— afilter function fen(R;, [i]) G{O,l}, ie [1, I'I]
« Output: Ry, [1]

« Function: () s el =

Split

3/4/2010

| Split
|

Split (Rin[1,..., 8], fcn, Rout[1,...,8]), fen(x)=x mod 2+1

* Alock-free algorithm

o Each thread is responsible for a portion of
the input.

o Each thread computes its local histogram.

o Given the local histograms, we compute the
write locations for each thread.

o Each thread writes the tuples to the output
in parallel.

| Split

I ol r2l] Tsl] Ta
1[1
~For partition
"§:—7¥apanition

L 4 : .2
Step (2), output [2Jol2]1]aJ2T0o[1]
=

Counts
(Scatter)

Step (1), count
(Map)

oalesced

| Split
I B 2l 1] Tl

Step (1), —For partition
g?:;zz)’ ; - 4 "tor partition
output 1Jof[2[1[1]2]0]1
SP4NES), L
prefix [oJaJa[3]a[5]7][7]
sum T _

tOffset,
Step (4), load . 1. —For partition
Counts o e S o T "
(Gather) ~For partition

Tl T2l] ts[] Tall

Coalesced

Rin [p2] p1 [p2 Mgl 2 e Tet]

Step (1), count
(Map)

| Split

Step (1),
count
Step (2),
output

8451),
prefix
sum

| Split

Step (1), count
(Map)

Step (2), output
Counts (Scatter)

Step (3), prefix
sum

Step (4), load
Counts (Gather)

Step (5), scatter
Rout

T.+—For partition
—For partition

In the local memory

Tl T2l] T[] mall]

111
) ,_%{For partition
) ‘—%or partition

y L e . 2
[1JoJ2J1]12Jo0[1]

Rin

[ol1]1]3a]s[7][7]

_,§4or partition
—For partition
L. 2

1Jo[Z2]1[1][2[0]1

L

[oT1T1[3[af5]7[7]

tOffset,

. S
2

«—For partition

(T[T 2[212]7]

Elapsed time (ms)

1

Optimizing Primitives

* Thread parallelism
o Parallelism among different
multiprocessors.
o Resource utilization within a multiprocessor.
* Memory optimizations
o Coalesced access for spatial locality.
o Local memory optimization for temporal
locality.

Thread Parallelism
(Varying #thread groups)

: e

4 — "

£ 04— —
FoH —
il
L@ SO o
T T 0 T T T T T
6 32 6 @ 56 5121024 1§ 32 @ 128 256 S12 1024
Mumber of thread groups (82) Nurmber of thread groups (Bp)
(1) T=32,
(2) w/ coalesced accesses,
(3) w/o local memory opt.

) - -

Performance Impact of
Optimization Techniques

» Coalesced access improves the
memory bandwidth by twice.

» Performance improvements of thread
parallelism depend on the
computation/memory characteristics
(30%- 4X)

* Local memory optimization improves
split and sort by twice.

* Primitives : 2~27x

Experimental Setup

* Implementation
o CPU: OpenMP

o GPU: CUDA
CMP (P4 Quad) |GPU (NV G80)
Processors (HZ) [2.66G*4 1.35G*128
Cache size 8MB 256KB
Bandwidth 10.4 86.4
(GB/sec)

Thread Parallelism
(Varying #thread/group)

5 220
Bz (512 85 (Ep=4

35 g2l
E £

v 4T — 3 2
£]

%i u 1 Zam
ER N — i
Y —)

o 18 T
s 3 28 26 s12 18 @ s 18

Humber of threads In sach group (T)

(1) Suitable Bp,

(2) w/ coalesced accesses.

Outline

Number of threads (n each group (T)

6 512

« HPC@home

o Engines
= GPUQP

3/4/2010

|GPUQP

* The first full-fledged reIaEtionaI query
stimation on memory an

processor on the GPU computation costs

Operators (Selection, projection, join,

Built on top of sort, aggregation efc.)

optimized primitives

Access methods (scan, B+-tree and

hash incex) -

optimizer

Primitives (map, filter, split etc.)

Sterese

B+ Tree vs. CSS Tree

» B+ tree imposes Memory stalls when traversed
(no spatial locality)

— Can’t perform multiple searches (loses temporal
locality).

CSS-Tree (Cache optimized search tree)

— One dimensional array where nodes are indexed.
— Replaces traversal with computation.

— Can also perform parallel key lookups.

Hash Join

* Hashjoin: HJ (R, S)

o Split R, S into the same number of partitions
using radix bits so that most S partitions fit into
the local memory
=> Skew handling: Identify the partitions that
do not fit into the local memory, and continue
split
=>Ajoin is decomposed into many small joins.

o Multiple small joins are evaluated in parallel.

3/4/2010

Joins

* Non-indexed nested-loop join (NINLJ)
* Indexed nested-loop join (INLJ)
o Adopt CSS-Tree [Ra099]
* Sort-merge join (SMJ)
» Hash join (HJ)
o Adopt radix join [Boncz99]

A Lock-Free Scheme for
Result Output

» Three steps:
o Each thread counts the number of join
results for the partitioned join.
o Prefix sum for write locations for each
thread and the total number of join results.
o Each thread outputs the join results in
parallel.

Skew Handling in HJ

« Identify the partitions that do not fit into
the local memory.
o Given an array storing partition sizes, we
split it into two groups.
= Partitions larger than the local memory
= Partitions not larger than the local memory

» Decompose each of the large partitions
into multiple small chunks.

Joins (Cont’)

0 8 16 4 kY 0 2 4 6 8
Percentage of tuples having matches (%) Percentage of duplicates in R (9

Cost Estimation for GPU

Toverati = Tonmdm(1) + Tap + Tdmmm(O)

Teev = Trem + Teomputation

X
Tounn(®) = To+ gy

TPC-H Results on Memory-
| Resident Data

3.8

DBMS X 14.0
CPU 1.01 0.79

GPUQP | 089 0.66

» SF=1, working set=1 GB; warmed buffer.
+ Both CPU and GPUQP outperforms DBMS X over 4.7 times.
* GPUQP is 13-20% faster than CPU-based engine.

3/4/2010

Experimental Results on Join

Queries
Joins |CPU (sec)GPU(sec)|Speedup
NINLJ 528.0 75.0 7.0
INLJ 4.2 0.7 6.1
SMJ 5.0 2.0 2.4
HJ 2.5 1.3 1.9

« In-memory databases

« The GPU measurements include the time for data transfer between
the GPU memory and the main memory.

« Tuple size=8 B, NINLJ (1million by one million), other joins (16 million
by 16 million)

Estimating T ;omputation

« measure unit cost

Map geort

(@) Map (b) quick sort (¢} NINLI (|R] = |S)

Toomputation = 1t~ ON1, ..., Ny)
Performance

+ CPU & GDB engines outperform DBMS X by

over 13.8times and 3.5 times @SF = 1/10

overall performance of GDB

— slightly faster than the CPU-based engine

— disk I/0 time contributes 98% to the total
execution time when SF = 10

GPU-based algorithms are poor

« poor for simple query: data transfer between main/device mem
« Faster for complex queries: insignificant data transfer

3/4/2010

Performance (Cont’) Conclusion
I
- GDB » The GPU has much higher computation
— significantly cool on memory-resident data power and memory bandwidth than the
« Primitives & query processing algorithms 2-27x over CPU.
optimized CPU-based counterparts . - L o
» CIGPU data transfer included . H|ghly-_opt|m|zed primitives as building
— 2-7x complex queries such as joins blocks is praCUCal for h|gh'|eVe|
— 2-4x slower for simple queries such as selections app'ications_
— comparable to optimized CPU-based engine on disk- « GPU-based primitives are 2-27x faster
based data: on TPC-H with data sets larger than mem X
than their CPU-based counterparts.

» GPU coprocessing reduces the computation time up to 23%
« Overall improvement is insignificant: disk I/O bottleneck

Future Work

» Compression to reduce main/G
memory data transfer overhead

* Multi-GPU processing

* New memory techniques
— Jim Gray: “flash is disk, disk is tape and tape is dead*

— Faster memory
» PCM, MEMS
« Design efficient data structures and algorithms on new
memories
 Re-design file systems

