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What’s this survey about?

I Comprehensive overview of high-level compiler
transformations/optimizations

I Languages: imperative, e.g. C, Fortran
I Architectures

I Sequential: common and general-purpose
I Parallel: superscalar, vector, SIMD, shared-memory MP,

distributed-memory MP, etc



What do compilers do?

I On a high level
I Translation: source code → machine code
I Optimization: various transformations to reduce running time,

code size, etc

I Specifically
I Lexical analysis
I Parsing
I Semantic Analysis
I Optimization
I Code generation

Clear separation of high-level programming languages and machine
architecture
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Optimization trilogy

Decide → Verify → Transform



Decide

I Difficult and poorly understood
I Search space is huge
I Decision making is complicated and expensive: some are

NP-complete or even undecidable

I Mostly a collection of piecemeal heuristics
I With some ordering heuristics
I With some progress in systematic application of families of

transformations

I Conflicts not uncommon, leading to
I Worse performance: less code → less efficient use of cache
I Incorrect program: e.g., Ubuntu 8.04’s patch made the

following code always output 1

int foo (void) {

signed char x = 1;

unsigned char y=-1;

return x > y;

}
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Scope of decision

I Statement

I Basic block (straight-line code)

I Innermost loop

I Perfect loop nest

I General loop nest

I Procedure (aka global optimization)

I Interprocedural



Verify

What is a legal transformation? (Given original program A and
transformed program B)

I B and A perform exactly the same operations in the same
order

I B and A produce exactly the same output for all identical
executions

I With same input data
I With same results for nondeterministic operations, e.g, rand()
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Verify

What is a legal transformation? (Given original program A and
transformed program B)

I B and A perform exactly the same operations in the same
order — too strict

I B and A produce exactly the same output for all identical
executions — still too strict

I With same input data
I With same results for nondeterministic operations, e.g, rand()



Let’s verify
(a) Original

do i=1,n

a[i] = b[k]+a[i]+100000.0

end do

return

(b) Transformed

C = b[k]+100000.0

do i=n,1,-1

a[i] = a[i]+C

end do

return

Problems:

I Evaluating C first may cause overflow
I Reordered additions of float-point numbers may cause

different results
I Algebraic commutative operations can be computationally

non-commutative for float-point numbers (semicommutative)

I If k is out of range of array b, memory fault can happen at a
different place

I a and b may be completely or partially aliased to one another,
causing updated b[k] to be used in (a) but not in (b)
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So how to ensure correctness in practice?

I Having different levels of “correctness”
I Original & transformed produce bitwise-identical results for

identical executions
I Original & transformed perform equivalent operations for

identical executions
I All permutations of semicommutative operations are

considered equivalent
I May produce not bitwise-identical results

I Enforcing restrictions in the programming language
I Fortran forbids argument aliases in function calls
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Typical goals of transformations

I Maximize use of computational resources
I May not be true for embedded, resource-constrained devices

I Minimize the number of operations performed (fewer machine
cycles)

I Minimize use of memory bandwidth (e.g., fewer cache misses)

I Minimize size of total memory required (both code & data
sizes)



Compiler Organization

I Optimization takes place in three distinct phases
I High-level intermediate language
I Low-level intermediate language
I Object code

I Where is each one of these levels most useful?
I High-level intermediate language

I Higher-level transformations
I Example: Array references vs low-level address calculations

I Low-level intermediate language
I Low-level machine independent transformations
I Example: Address computations a[5, 3], a[7, 3]

I Object code
I Machine specific optimizations
I Example: Binary-to-binary translations
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Dependence analysis

I What is a dependence?
I A relationship between two computations
I Places constraints on their execution order

I Two kinds of dependences
I Control dependences

I 1: if (a == 3)

2: b = u10

I Data dependences
I Flow dependences
I Antidependences
I Output dependences
I Input dependences

I Dependence graph

I Control dependences are often converted to data-dependences
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Data dependences examples

I Flow dependences

I 3: a = c*10

4: d = 2*a + c

I Antidependences
I 5: e = f*4 + g

6: g = 2*h

I Output dependences
I 7: a = b*c

8: a = d + e

I Input dependences
I An opportunity for optimizing data placement
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Loop dependence analysis

I Loop carried dependences
I 1: for i = 2 to n

2: a[i] = a[i] + c

3: b[i] = a[i-1] + b[i]

I Distance vectors
I Describe distances between iterations
I May be different than the distance between array elements
I Must be positive

I Discovering loop-carried dependences
I Proving independence can be very difficult
I Most compilers use a simple set of heuristics

I When subscript expressions are too complex
I The optimizer gives up
I Statements are assumed to be fully dependent
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Dataflow-based loop transformations

I Loop-based strength reduction
I Replace operations with equivalent but less expensive ones

I Loop-invariant code motion
I Sometimes expressions are constant within a loop
I We can move that computation outside the loop
I Caveat: Increases register pressure

I Loop unswitching
I Loops often contain conditionals
I If their conditions are loop-invariant they can be moved outside
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Loop reordering

I Change the relative order of nested loops

I Expose parallelism
I Improve memory locality

I Techniques used
I Loop interchange
I Loop skewing
I Loop reversal
I Strip mining
I Cycle Shrinking
I Loop tiling
I Loop distribution
I Loop fusion



Loop reordering

I Change the relative order of nested loops
I Expose parallelism
I Improve memory locality

I Techniques used

I Loop interchange
I Loop skewing
I Loop reversal
I Strip mining
I Cycle Shrinking
I Loop tiling
I Loop distribution
I Loop fusion



Loop reordering

I Change the relative order of nested loops
I Expose parallelism
I Improve memory locality

I Techniques used
I Loop interchange
I Loop skewing
I Loop reversal
I Strip mining
I Cycle Shrinking
I Loop tiling
I Loop distribution
I Loop fusion



Loop reordering

I Change the relative order of nested loops
I Expose parallelism
I Improve memory locality

I Techniques used
I Loop interchange: Reduce stride
I Loop skewing: Expose parallelism
I Loop reversal: Reduce loop overhead
I Strip mining: SIMD
I Cycle Shrinking: Expose fine-grained parallelism
I Loop tiling: Improve processor, register, TLB, page locality
I Loop distribution: Create smaller lighter loops
I Loop fusion: Reduce loop overhead



Loop restructuring

I Loop unrolling

I Very well known
I Very effective
I Reduces loop overhead
I Increases instruction level parallelism
I Improves locality
I Caveat: Increases code size

I Software pipelining
I Loop coalescing

I Combine a loop nest into a single loop

I Loop collapsing
I More efficient but less general than coalescing

I Loop peeling: Helps expose other optimizations
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Loop replacement

I Reduction recognition
I Compute a scalar from an array
I For example: sum, max , or
I Can be parallelized for commutative operations

I Loop idiom recognition
I Take advantage of SIMD hardware
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Memory access transformations

I More and more applications become memory limited

I Substitute “memory” with “I/O” if you are DB oriented

I Popular techniques:
I Array padding
I Scalar expansion
I Array contraction
I Scalar replacement
I Code collocation
I Displacement minimization
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Memory access transformations

I More and more applications become memory limited

I Substitute “memory” with “I/O” if you are DB oriented
I Popular techniques:

I Array padding: reduces conflicts
I Scalar expansion: help parallelize loops
I Array contraction: reduce temporary storage
I Scalar replacement: reduce frequent access overhead
I Code collocation: improve memory access behavior
I Displacement minimization: reduce jump distance



Partial evaluation

I Perform part of the computation at compile time

I Popular techniques:
I Constant propagation
I Constant folding
I Copy propagation
I Forward substitution
I Reassociation
I Algebraic simplification
I Strength reduction
I I/O format compilation
I Superoptimizing
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I Remove redundant computations

I Popular techniques:
I Unreachable-code elimination
I Useless-code elimination
I Dead-variable elimination
I Common-subexpression elimination
I Short circuiting
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To be continued...

I Thank you for your attention

I Questions?
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