Compiler Transformations
for High-Performance Computing

(2)

Presented by
Jason Pazis and Yi Zhang

March 25, 2010



Procedure call transformations (1)

» Leaf procedure optimization
» Won't call other procedures

» Cross-call register allocation

» Parameter promotion

» Advantage:



Procedure call transformations (1)

» Leaf procedure optimization

» Won't call other procedures
» No need to save/restore return address register
» No need to allocate stack frame

» Cross-call register allocation

» Parameter promotion

» Advantage:



Procedure call transformations (1)

» Leaf procedure optimization

» Won't call other procedures
» No need to save/restore return address register
» No need to allocate stack frame

» Cross-call register allocation
» Caller can use registers which callee won't use

» Parameter promotion

» Advantage:



Procedure call transformations (1)

» Leaf procedure optimization

» Won't call other procedures
» No need to save/restore return address register
» No need to allocate stack frame

» Cross-call register allocation
» Caller can use registers which callee won't use
» Parameter promotion

» Used when parameter is passed by reference
» Unmodified — pass by value; modified — pass by value-return
» Advantage:



Procedure call transformations (1)

» Leaf procedure optimization

» Won't call other procedures
» No need to save/restore return address register
» No need to allocate stack frame

» Cross-call register allocation
» Caller can use registers which callee won't use
» Parameter promotion

» Used when parameter is passed by reference
» Unmodified — pass by value; modified — pass by value-return
» Advantage: can use registers instead of LOAD/STORE



Procedure call transformations (2)
» Procedure inlining

» What about recursive procedures?
» Advantages:

» Disadvantages:

v

Procedure cloning (grouped into specialized versions)

v

Loop pushing
Tail recursion elimination

v

» When is it not applicable?

v

Function Memoization
» When is this useful?



Procedure call transformations (2)

» Procedure inlining

» What about recursive procedures?

» Advantages:
> No separate stack frame allocation
> No transfer of control (better cache behavior)
> Improves compiler analysis and optimization
» Cheaper than interprocedural analysis

» Disadvantages:

v

Procedure cloning (grouped into specialized versions)

v

Loop pushing
Tail recursion elimination

v

» When is it not applicable?

Function Memoization
» When is this useful?

v



Procedure call transformations (2)

» Procedure inlining

» What about recursive procedures?

» Advantages:
> No separate stack frame allocation
> No transfer of control (better cache behavior)
> Improves compiler analysis and optimization
» Cheaper than interprocedural analysis

» Disadvantages:
> Increases code size
» May increase cache misses

v

Procedure cloning (grouped into specialized versions)

v

Loop pushing
Tail recursion elimination

v

» When is it not applicable?

Function Memoization
» When is this useful?

v



Procedure call transformations (2)

» Procedure inlining

» What about recursive procedures?

» Advantages:
> No separate stack frame allocation
> No transfer of control (better cache behavior)
> Improves compiler analysis and optimization
» Cheaper than interprocedural analysis

» Disadvantages:
> Increases code size
» May increase cache misses

v

Procedure cloning (grouped into specialized versions)

v

Loop pushing
Tail recursion elimination
» When is it not applicable? C++

v

Function Memoization
» When is this useful?

v



Procedure call transformations (2)

» Procedure inlining

» What about recursive procedures?

» Advantages:
> No separate stack frame allocation
> No transfer of control (better cache behavior)
> Improves compiler analysis and optimization
» Cheaper than interprocedural analysis

» Disadvantages:
> Increases code size
» May increase cache misses

v

Procedure cloning (grouped into specialized versions)

v

Loop pushing
Tail recursion elimination
» When is it not applicable? C++

v

Function Memoization

v

» When is this useful? side-effect free callee, expensive
computation, limited parameter configuration



Transformations for parallel machines

» Automatic parallelization of sequential code is hard
» Some compilers support explicit directives
» Examples: HPF, OpenMP, ...

#pragma omp parallel for
for (int i=0; i<n; i++)
c[i] = ali] + blil;



Regular array decomposition




Regular array decomposition

Serial

Block

Cyclic-serial

Block-cyclic
» Decomposition based on load balancing

> Needs to consider together with locality/communication



Other parallelization techniques based on data layout

» Scalar privatization
> Array privatization

» Cache alignment



Automatic decomposition and alignment

v

Decomposition: how array elements are distributed across a
set of processors

v

Alignment: which elements go onto each processor

v

Goals: maximize parallelism and minimize communication

v

Approaches
» Manual: e.g., BLOCK and CYCLIC in HPF
» Automatic: represent program behavior (e.g., communication)
so that it can be reasoned and computed



Automatic global optimization for parallelism and locality
[Anderson & Lam 1993]

v

Trade-off between parallelism and locality

v

Target machines: both distributed and shared address space
Domain

v

» Dense matrix code: loop bounds and array subscripts are affine
functions of loop indices and symbolic constants

» Across multiple loop nests

> FHiterations > #processors

v

Objective: find first-order, or "shape” of data and
computation decomposition



Example

forall i=0 to N do
forall j=0 to N do
Y[i,N-j] += X[i,j];
forall i=1 to N do
for j=1 to N do
Z[i,3] = Z[i,j-11+Y[],i-1];



Problem formulation

» Given a loop nest of depth /, with loop bounds being affine
functions of the loop indices, an iteration space Z is defined

» Given an m-dimensional array, an array space A is defined

» Given an n-dimensional processor array, a processor space P is
defined



Problem formulation

» Given a loop nest of depth /, with loop bounds being affine
functions of the loop indices, an iteration space Z is defined

» Given an m-dimensional array, an array space A is defined

» Given an n-dimensional processor array, a processor space P is
defined

» Data decomposition modeled as a function
d(a): A — P, where d(a) = Da+§

» Computation decomposition modeled as a function
c(i) : Z — P, where c(i) = Di+~



Problem formulation

» Given a loop nest of depth /, with loop bounds being affine
functions of the loop indices, an iteration space Z is defined

» Given an m-dimensional array, an array space A is defined

» Given an n-dimensional processor array, a processor space P is
defined

» Data decomposition modeled as a function
d(a): A — P, where d(a) = Da+§

» Computation decomposition modeled as a function
c(i) : Z — P, where c(i) = Di+~

» Objective: find c(i) for each loop nest and d(a) for each array

in each loop nest, s.t. parallelism is maximized and
communication is minimized



Solution to example

forall i=0 to N do
forall j=0 to N do
Y[i,N-j] += X[i,j];
forall i=1 to N do
for j=1 to N do
Z[i,j] = Z[i,j-11+Y[j,i-1];

v

dx(a) = [0 1]a + [0]

dy(a) =[0 —1Ja+[N]
dz(a) = [-1 0la+ [N + 1]
cu(i) = [0 1]i + [0]

(i) = [-1 0]i + [N + 1]

v

v

v

v



Basic concepts

Solving the problem in three steps

1. Partition
» Collocate data and computation
» Described by the null spaces of D and C

2. Orientation
» Determine the orientation of axes of each space
» Described by D and C

3. Displacement

» Determine the offsets of starting position of data and
computation
» Described by § and ~



What about communication?

» Condition of no communication: Dy (f;(i)) +¢ = G(i) + v
» Maximizing parallelism means minimizing the nullspace of C
» Allowing pipelined communication (with single loop nest)
» Solvable by an extension to the no communication case
» Allowing data reorganization communication (due to
mismatch of decompositions for multiple loop nests)

» Modeled using communication graphs
» Dynamic decomposition is NP-hard



Exposing coarse-grained parallelism

Identify big chunks of computation with no or little communication

» Procedure call parallelization
» Perform a call as an independent, parallel task
» Split
» Split some iterations of one loop off so that they are
independent of some other loop
» Graph partitioning
» Data-flow graphs: computation as nodes, communication as
edges
» Individual nodes often too small as unit of scheduling

» Common approach: dynamic scheduling + task merging (e.g.,
Dryad)



Computation partitioning

Original code Guard introduction
for i=1,n for i=1,n
do alil if i in my range
do bli] do ali]
end for if i in my range
do bl[i]
end for

Redundant guard elimination Bounds reduction

for i=1,n for i in my range
if i in my range do alil
do alil do b[il]
do bl[il end for
end if

end for



Communication optimization

> Cost model: startup time + per-element cost x #elements

>

Implication: prefer one large message than multiple small ones

» Techniques

>

vV vy VvV VvVYy

Message vectorization

Message coalescing

Message aggregation

Collective communication

Message pipelining

Redundant communication elimination



Transformations for specific architectures

» VLIW

» Requires more parallelism than in basic blocks
» Trace scheduling can be helpful

» SIMD
» Has regular interconnection network

» Optimization based on multistencils
» Optimization based on alignment preference graphs



Automatic data allocation to minimize communication on
SIMD machines [Knobe & Natarajan 1993|

» SIMD computers
» Many processing elements (PEs), each with its own local

memory
» Each instruction executed by a subset of the PEs
» Two kinds of communication between PEs: router and grid



Automatic data allocation to minimize communication on
SIMD machines [Knobe & Natarajan 1993|

» SIMD computers

» Many processing elements (PEs), each with its own local
memory

» Each instruction executed by a subset of the PEs

» Two kinds of communication between PEs: router and grid

> Q: how to allocate arrays to maximize parallelism and
minimize communication?



Automatic data allocation to minimize communication on
SIMD machines [Knobe & Natarajan 1993|

» SIMD computers
» Many processing elements (PEs), each with its own local
memory
» Each instruction executed by a subset of the PEs
» Two kinds of communication between PEs: router and grid

> Q: how to allocate arrays to maximize parallelism and
minimize communication?

» Key concepts: alignment by usage, layout preferences,
dynamic alignment



Canonical allocation

» Allocation function: maps a array element to a PE where it is
stored
» Canonical allocation

» Fixed mapping for each array for its entire lifetime
» Each read/write goes to the PE where it is stored
» Why not go dynamic?



Allocation driven by usage—preferences

» Example:
temp(1:N) = A(J,1:N)
A(J,1:N) = B(J,1:N)
B(J,1:N) = temp(1:N)



Allocation driven by usage—preferences

» Example:
temp(1:N) = A(J,1:N)
A(J,1:N) = B(@J,1:N)
B(J,1:N) = temp(1:N)

> Identity preference
» True dependency; identical alignment of array elements for the

two references
» Honored by identical allocation functions



Allocation driven by usage—preferences

» Example:
temp(1:N) = A(J,1:N)
A(J,1:N) = B(@J,1:N)
B(J,1:N) = temp(1:N)

> Identity preference
» True dependency; identical alignment of array elements for the

two references
» Honored by identical allocation functions

» Conformance preference
> Relates two array sections in the same operation

» Honored by choosing alignment functions that produce the
same results



Allocation driven by usage—preferences

» Example:
temp(1:N) = A(J,1:N)
A(J,1:N) = B(@J,1:N)
B(J,1:N) = temp(1:N)

> Identity preference
» True dependency; identical alignment of array elements for the

two references
» Honored by identical allocation functions

» Conformance preference
> Relates two array sections in the same operation

» Honored by choosing alignment functions that produce the
same results

» Handling conflicts
» Unhonor some preferences and compensate with data motion
» Decrease parallelism



Unhonored preferences and data motion

» Unhonored conformance preferences

» Unhonored identity preferences



Unhonored preferences and data motion

» Unhonored conformance preferences
» Addressed by inserting data motion local to the operation

» Unhonored identity preferences



Unhonored preferences and data motion

» Unhonored conformance preferences
» Addressed by inserting data motion local to the operation

» Unhonored identity preferences
» Complicated by branches and loops
» A single definition may reach multiple uses; a single use may
be reached by multiple definitions



Unhonored preferences and data motion

» Unhonored conformance preferences
» Addressed by inserting data motion local to the operation

» Unhonored identity preferences

» Complicated by branches and loops
» A single definition may reach multiple uses; a single use may
be reached by multiple definitions

» Using canonical allocation?
» Easy to implement
» Compiler has the freedom to choose the location of single
allocation
» But may incur a lot of communication



Unhonored preferences and data motion

» Unhonored conformance preferences
» Addressed by inserting data motion local to the operation

» Unhonored identity preferences
» Complicated by branches and loops
» A single definition may reach multiple uses; a single use may
be reached by multiple definitions

» Using canonical allocation?

» Easy to implement

» Compiler has the freedom to choose the location of single
allocation

» But may incur a lot of communication

> A better approach: partition program into “regions”

» Combines single allocation and allocation by usage
» Can have different allocations for an array in different regions



High-level algorithm

v

Lifetime analysis of arrays

v

Construction of preference graph
» Nodes: array occurrences
» Edges: preferences labeled with costs
» Costs: Cost of motion resulting from not honoring the
preference

v

Processing of the preference graph

» Greedy, in non-increasing cost order
> If edges have the same cost, identity edges are processed first

v

Computed alignments lead to division of regions



Transformation frameworks

» Unified transformation
» Unimodular matrix theory: applicable to loop interchange,
reversal, and skew
» Template-based: applicable to unimodular, tiling, coalescing,
and parallel loop execution of perfect loop nests
» More ambitious (and expensive) techniques available

» Searching the transformation space
» Target machine represented as a set of features
» Search based on hierarchical heuristics



Compiler evaluation

» How can we compare one compiler to another?

v

Remains an unsolved problem

» No universally agreed upon metrics

v

Results are architecture specific

v

Results are application specific



Benchmarks

» Benchmarks have received much attention



Benchmarks

» Benchmarks have received much attention
» Popular benchmarks:

SPEC

SPLASH

NAS
The Perfect Club

v

v vy



Code characteristics

» A number of studies focus on the applications
» Early studies by Knuth in 1971



Code characteristics

» A number of studies focus on the applications

» Early studies by Knuth in 1971
» Classical results:

» Most of the time is spent in a small fraction of the code
» 95% of all do loops incremented their index by 1
» 40% of all do loops contained only one statement



Compiler effectiveness

» How can we evaluate the effectiveness of a compiler?



Compiler effectiveness

» How can we evaluate the effectiveness of a compiler?

Examine compiler's output by hand

Compare its performance to other compilers

Compare full- with no- optimization

Compare parallel and uniprocessor versions of an application

vV vy vVvYy



Instruction-level parallelism

» What is the potential gain of instruction-level parallelism?

» A number of studies have tried to find an upper bound.



Instruction-level parallelism

» What is the potential gain of instruction-level parallelism?

» A number of studies have tried to find an upper bound.
» Some where very pessimistic (Flynn bottleneck)
» Looked only within the scope of a basic block



Instruction-level parallelism

v

What is the potential gain of instruction-level parallelism?

v

A number of studies have tried to find an upper bound.

v

Some where very pessimistic (Flynn bottleneck)
» Looked only within the scope of a basic block

v

Parallelism can be exploited across block boundaries

» However some approaches required huge amounts of hardware

» Many suggested that general applications are much harder to
parallelize than scientific applications

» VLIW architectures showed promise



Conclusion

» Where are the optimizations with the biggest impact?



Conclusion

» Where are the optimizations with the biggest impact?
» Loops:
» Expose parallelism over a loop
Reduce the number of instructions in a loop body

>
» Improve memory locality over the loop
» Reduce loop overhead



Summing it all up

» We have described a large number of transformations

» Many of them promise large performance gains



Summing it all up

» We have described a large number of transformations

» Many of them promise large performance gains
> However:
» Current optimizing compilers lack an organizing principle
» Their tuning is more of a black-art than a science
» Often a transformation is performed only to be undone by a
subsequent one
» Object oriented paradigms present significant challenges for
optimization



Current issues

» Scalability

» Automatic parallelization has yet to yield any concrete results



Current issues

» Scalability
» Automatic parallelization has yet to yield any concrete results

» How about learning which optimizations to perform?

There seems to be no work on this approach

It would be very complicated

One of its prerequisites would be the ability to measure a
solution’s success

» However that is an unsolved problem as well

v

v

v



Discussion

» What do you think of compiler technology?
» Do they have a really hard problem?
> Are they approaching it correctly?



Discussion

v

What do you think of compiler technology?

v

Do they have a really hard problem?

v

Are they approaching it correctly?

v

Should languages become more constrained to aid
optimization?



Discussion

» What do you think of compiler technology?

» Do they have a really hard problem?

> Are they approaching it correctly?

» Should languages become more constrained to aid
optimization?

» What do the failures of parallel compilers mean for
frameworks such as map-reduce?

» How does the content of this paper translate to your research?



Thank you for your attention

» Thank you for your attention

» Questions?



