
Compiler Transformations
for High-Performance Computing

(2)

Presented by
Jason Pazis and Yi Zhang

March 25, 2010



Procedure call transformations (1)

I Leaf procedure optimization
I Won’t call other procedures

I No need to save/restore return address register
I No need to allocate stack frame

I Cross-call register allocation

I Caller can use registers which callee won’t use

I Parameter promotion

I Used when parameter is passed by reference
I Unmodified → pass by value; modified → pass by value-return

I Advantage:

can use registers instead of LOAD/STORE



Procedure call transformations (1)

I Leaf procedure optimization
I Won’t call other procedures
I No need to save/restore return address register
I No need to allocate stack frame

I Cross-call register allocation

I Caller can use registers which callee won’t use

I Parameter promotion

I Used when parameter is passed by reference
I Unmodified → pass by value; modified → pass by value-return

I Advantage:

can use registers instead of LOAD/STORE



Procedure call transformations (1)

I Leaf procedure optimization
I Won’t call other procedures
I No need to save/restore return address register
I No need to allocate stack frame

I Cross-call register allocation
I Caller can use registers which callee won’t use

I Parameter promotion

I Used when parameter is passed by reference
I Unmodified → pass by value; modified → pass by value-return

I Advantage:

can use registers instead of LOAD/STORE



Procedure call transformations (1)

I Leaf procedure optimization
I Won’t call other procedures
I No need to save/restore return address register
I No need to allocate stack frame

I Cross-call register allocation
I Caller can use registers which callee won’t use

I Parameter promotion
I Used when parameter is passed by reference
I Unmodified → pass by value; modified → pass by value-return
I Advantage:

can use registers instead of LOAD/STORE



Procedure call transformations (1)

I Leaf procedure optimization
I Won’t call other procedures
I No need to save/restore return address register
I No need to allocate stack frame

I Cross-call register allocation
I Caller can use registers which callee won’t use

I Parameter promotion
I Used when parameter is passed by reference
I Unmodified → pass by value; modified → pass by value-return
I Advantage: can use registers instead of LOAD/STORE



Procedure call transformations (2)

I Procedure inlining
I What about recursive procedures?
I Advantages:

I No separate stack frame allocation
I No transfer of control (better cache behavior)
I Improves compiler analysis and optimization
I Cheaper than interprocedural analysis

I Disadvantages:

I Increases code size
I May increase cache misses

I Procedure cloning (grouped into specialized versions)

I Loop pushing
I Tail recursion elimination

I When is it not applicable?

C++

I Function Memoization
I When is this useful?

side-effect free callee, expensive
computation, limited parameter configuration



Procedure call transformations (2)

I Procedure inlining
I What about recursive procedures?
I Advantages:

I No separate stack frame allocation
I No transfer of control (better cache behavior)
I Improves compiler analysis and optimization
I Cheaper than interprocedural analysis

I Disadvantages:

I Increases code size
I May increase cache misses

I Procedure cloning (grouped into specialized versions)

I Loop pushing
I Tail recursion elimination

I When is it not applicable?

C++

I Function Memoization
I When is this useful?

side-effect free callee, expensive
computation, limited parameter configuration



Procedure call transformations (2)

I Procedure inlining
I What about recursive procedures?
I Advantages:

I No separate stack frame allocation
I No transfer of control (better cache behavior)
I Improves compiler analysis and optimization
I Cheaper than interprocedural analysis

I Disadvantages:
I Increases code size
I May increase cache misses

I Procedure cloning (grouped into specialized versions)

I Loop pushing
I Tail recursion elimination

I When is it not applicable?

C++

I Function Memoization
I When is this useful?

side-effect free callee, expensive
computation, limited parameter configuration



Procedure call transformations (2)

I Procedure inlining
I What about recursive procedures?
I Advantages:

I No separate stack frame allocation
I No transfer of control (better cache behavior)
I Improves compiler analysis and optimization
I Cheaper than interprocedural analysis

I Disadvantages:
I Increases code size
I May increase cache misses

I Procedure cloning (grouped into specialized versions)

I Loop pushing
I Tail recursion elimination

I When is it not applicable? C++

I Function Memoization
I When is this useful?

side-effect free callee, expensive
computation, limited parameter configuration



Procedure call transformations (2)

I Procedure inlining
I What about recursive procedures?
I Advantages:

I No separate stack frame allocation
I No transfer of control (better cache behavior)
I Improves compiler analysis and optimization
I Cheaper than interprocedural analysis

I Disadvantages:
I Increases code size
I May increase cache misses

I Procedure cloning (grouped into specialized versions)

I Loop pushing
I Tail recursion elimination

I When is it not applicable? C++

I Function Memoization
I When is this useful? side-effect free callee, expensive

computation, limited parameter configuration



Transformations for parallel machines

I Automatic parallelization of sequential code is hard
I Some compilers support explicit directives

I Examples: HPF, OpenMP, . . .

#pragma omp parallel for

for (int i=0; i<n; i++)

c[i] = a[i] + b[i];



Regular array decomposition

Serial Block Cyclic-serial Block-cyclic

?

I Decomposition based on load balancing

I Needs to consider together with locality/communication



Regular array decomposition

Serial Block Cyclic-serial Block-cyclic

?

I Decomposition based on load balancing

I Needs to consider together with locality/communication



Other parallelization techniques based on data layout

I Scalar privatization

I Array privatization

I Cache alignment



Automatic decomposition and alignment

I Decomposition: how array elements are distributed across a
set of processors

I Alignment: which elements go onto each processor

I Goals: maximize parallelism and minimize communication
I Approaches

I Manual: e.g., BLOCK and CYCLIC in HPF
I Automatic: represent program behavior (e.g., communication)

so that it can be reasoned and computed



Automatic global optimization for parallelism and locality
[Anderson & Lam 1993]

I Trade-off between parallelism and locality

I Target machines: both distributed and shared address space
I Domain

I Dense matrix code: loop bounds and array subscripts are affine
functions of loop indices and symbolic constants

I Across multiple loop nests
I #iterations � #processors

I Objective: find first-order, or ”shape” of data and
computation decomposition



Example

forall i=0 to N do

forall j=0 to N do

Y[i,N-j] += X[i,j];

forall i=1 to N do

for j=1 to N do

Z[i,j] = Z[i,j-1]+Y[j,i-1];



Problem formulation

I Given a loop nest of depth l , with loop bounds being affine
functions of the loop indices, an iteration space I is defined

I Given an m-dimensional array, an array space A is defined

I Given an n-dimensional processor array, a processor space P is
defined

I Data decomposition modeled as a function
d(a) : A → P, where d(a) = Da + δ

I Computation decomposition modeled as a function
c(i) : I → P, where c(i) = Di + γ

I Objective: find c(i) for each loop nest and d(a) for each array
in each loop nest, s.t. parallelism is maximized and
communication is minimized



Problem formulation

I Given a loop nest of depth l , with loop bounds being affine
functions of the loop indices, an iteration space I is defined

I Given an m-dimensional array, an array space A is defined

I Given an n-dimensional processor array, a processor space P is
defined

I Data decomposition modeled as a function
d(a) : A → P, where d(a) = Da + δ

I Computation decomposition modeled as a function
c(i) : I → P, where c(i) = Di + γ

I Objective: find c(i) for each loop nest and d(a) for each array
in each loop nest, s.t. parallelism is maximized and
communication is minimized



Problem formulation

I Given a loop nest of depth l , with loop bounds being affine
functions of the loop indices, an iteration space I is defined

I Given an m-dimensional array, an array space A is defined

I Given an n-dimensional processor array, a processor space P is
defined

I Data decomposition modeled as a function
d(a) : A → P, where d(a) = Da + δ

I Computation decomposition modeled as a function
c(i) : I → P, where c(i) = Di + γ

I Objective: find c(i) for each loop nest and d(a) for each array
in each loop nest, s.t. parallelism is maximized and
communication is minimized



Solution to example

forall i=0 to N do

forall j=0 to N do

Y[i,N-j] += X[i,j];

forall i=1 to N do

for j=1 to N do

Z[i,j] = Z[i,j-1]+Y[j,i-1];

I dX (a) = [0 1]a + [0]

I dY (a) = [0 − 1]a + [N]

I dZ (a) = [−1 0]a + [N + 1]

I c1(i) = [0 1]i + [0]

I c2(i) = [−1 0]i + [N + 1]



Basic concepts

Solving the problem in three steps

1. Partition
I Collocate data and computation
I Described by the null spaces of D and C

2. Orientation
I Determine the orientation of axes of each space
I Described by D and C

3. Displacement
I Determine the offsets of starting position of data and

computation
I Described by δ and γ



What about communication?

I Condition of no communication: Dx(fxj(i)) + δ = Cj(i) + γ
I Maximizing parallelism means minimizing the nullspace of C

I Allowing pipelined communication (with single loop nest)
I Solvable by an extension to the no communication case

I Allowing data reorganization communication (due to
mismatch of decompositions for multiple loop nests)

I Modeled using communication graphs
I Dynamic decomposition is NP-hard



Exposing coarse-grained parallelism

Identify big chunks of computation with no or little communication

I Procedure call parallelization
I Perform a call as an independent, parallel task

I Split
I Split some iterations of one loop off so that they are

independent of some other loop

I Graph partitioning
I Data-flow graphs: computation as nodes, communication as

edges
I Individual nodes often too small as unit of scheduling
I Common approach: dynamic scheduling + task merging (e.g.,

Dryad)



Computation partitioning

Original code

for i=1,n

do a[i]

do b[i]

end for

Guard introduction

for i=1,n

if i in my range

do a[i]

if i in my range

do b[i]

end for

Redundant guard elimination

for i=1,n

if i in my range

do a[i]

do b[i]

end if

end for

Bounds reduction

for i in my range

do a[i]

do b[i]

end for



Communication optimization

I Cost model: startup time + per-element cost × #elements
I Implication: prefer one large message than multiple small ones

I Techniques
I Message vectorization
I Message coalescing
I Message aggregation
I Collective communication
I Message pipelining
I Redundant communication elimination



Transformations for specific architectures

I VLIW
I Requires more parallelism than in basic blocks
I Trace scheduling can be helpful

I SIMD
I Has regular interconnection network
I Optimization based on multistencils
I Optimization based on alignment preference graphs



Automatic data allocation to minimize communication on
SIMD machines [Knobe & Natarajan 1993]

I SIMD computers
I Many processing elements (PEs), each with its own local

memory
I Each instruction executed by a subset of the PEs
I Two kinds of communication between PEs: router and grid

I Q: how to allocate arrays to maximize parallelism and
minimize communication?

I Key concepts: alignment by usage, layout preferences,
dynamic alignment



Automatic data allocation to minimize communication on
SIMD machines [Knobe & Natarajan 1993]

I SIMD computers
I Many processing elements (PEs), each with its own local

memory
I Each instruction executed by a subset of the PEs
I Two kinds of communication between PEs: router and grid

I Q: how to allocate arrays to maximize parallelism and
minimize communication?

I Key concepts: alignment by usage, layout preferences,
dynamic alignment



Automatic data allocation to minimize communication on
SIMD machines [Knobe & Natarajan 1993]

I SIMD computers
I Many processing elements (PEs), each with its own local

memory
I Each instruction executed by a subset of the PEs
I Two kinds of communication between PEs: router and grid

I Q: how to allocate arrays to maximize parallelism and
minimize communication?

I Key concepts: alignment by usage, layout preferences,
dynamic alignment



Canonical allocation

I Allocation function: maps a array element to a PE where it is
stored

I Canonical allocation
I Fixed mapping for each array for its entire lifetime
I Each read/write goes to the PE where it is stored
I Why not go dynamic?



Allocation driven by usage—preferences

I Example:

temp(1:N) = A(J,1:N)

A(J,1:N) = B(J,1:N)

B(J,1:N) = temp(1:N)

I Identity preference
I True dependency; identical alignment of array elements for the

two references
I Honored by identical allocation functions

I Conformance preference
I Relates two array sections in the same operation
I Honored by choosing alignment functions that produce the

same results

I Handling conflicts
I Unhonor some preferences and compensate with data motion
I Decrease parallelism



Allocation driven by usage—preferences

I Example:

temp(1:N) = A(J,1:N)

A(J,1:N) = B(J,1:N)

B(J,1:N) = temp(1:N)

I Identity preference
I True dependency; identical alignment of array elements for the

two references
I Honored by identical allocation functions

I Conformance preference
I Relates two array sections in the same operation
I Honored by choosing alignment functions that produce the

same results

I Handling conflicts
I Unhonor some preferences and compensate with data motion
I Decrease parallelism



Allocation driven by usage—preferences

I Example:

temp(1:N) = A(J,1:N)

A(J,1:N) = B(J,1:N)

B(J,1:N) = temp(1:N)

I Identity preference
I True dependency; identical alignment of array elements for the

two references
I Honored by identical allocation functions

I Conformance preference
I Relates two array sections in the same operation
I Honored by choosing alignment functions that produce the

same results

I Handling conflicts
I Unhonor some preferences and compensate with data motion
I Decrease parallelism



Allocation driven by usage—preferences

I Example:

temp(1:N) = A(J,1:N)

A(J,1:N) = B(J,1:N)

B(J,1:N) = temp(1:N)

I Identity preference
I True dependency; identical alignment of array elements for the

two references
I Honored by identical allocation functions

I Conformance preference
I Relates two array sections in the same operation
I Honored by choosing alignment functions that produce the

same results

I Handling conflicts
I Unhonor some preferences and compensate with data motion
I Decrease parallelism



Unhonored preferences and data motion

I Unhonored conformance preferences

I Addressed by inserting data motion local to the operation

I Unhonored identity preferences

I Complicated by branches and loops
I A single definition may reach multiple uses; a single use may

be reached by multiple definitions

I Using canonical allocation?
I Easy to implement
I Compiler has the freedom to choose the location of single

allocation
I But may incur a lot of communication

I A better approach: partition program into “regions”
I Combines single allocation and allocation by usage
I Can have different allocations for an array in different regions



Unhonored preferences and data motion

I Unhonored conformance preferences
I Addressed by inserting data motion local to the operation

I Unhonored identity preferences

I Complicated by branches and loops
I A single definition may reach multiple uses; a single use may

be reached by multiple definitions

I Using canonical allocation?
I Easy to implement
I Compiler has the freedom to choose the location of single

allocation
I But may incur a lot of communication

I A better approach: partition program into “regions”
I Combines single allocation and allocation by usage
I Can have different allocations for an array in different regions



Unhonored preferences and data motion

I Unhonored conformance preferences
I Addressed by inserting data motion local to the operation

I Unhonored identity preferences
I Complicated by branches and loops
I A single definition may reach multiple uses; a single use may

be reached by multiple definitions

I Using canonical allocation?
I Easy to implement
I Compiler has the freedom to choose the location of single

allocation
I But may incur a lot of communication

I A better approach: partition program into “regions”
I Combines single allocation and allocation by usage
I Can have different allocations for an array in different regions



Unhonored preferences and data motion

I Unhonored conformance preferences
I Addressed by inserting data motion local to the operation

I Unhonored identity preferences
I Complicated by branches and loops
I A single definition may reach multiple uses; a single use may

be reached by multiple definitions

I Using canonical allocation?
I Easy to implement
I Compiler has the freedom to choose the location of single

allocation
I But may incur a lot of communication

I A better approach: partition program into “regions”
I Combines single allocation and allocation by usage
I Can have different allocations for an array in different regions



Unhonored preferences and data motion

I Unhonored conformance preferences
I Addressed by inserting data motion local to the operation

I Unhonored identity preferences
I Complicated by branches and loops
I A single definition may reach multiple uses; a single use may

be reached by multiple definitions

I Using canonical allocation?
I Easy to implement
I Compiler has the freedom to choose the location of single

allocation
I But may incur a lot of communication

I A better approach: partition program into “regions”
I Combines single allocation and allocation by usage
I Can have different allocations for an array in different regions



High-level algorithm

I Lifetime analysis of arrays
I Construction of preference graph

I Nodes: array occurrences
I Edges: preferences labeled with costs
I Costs: Cost of motion resulting from not honoring the

preference

I Processing of the preference graph
I Greedy, in non-increasing cost order
I If edges have the same cost, identity edges are processed first

I Computed alignments lead to division of regions



Transformation frameworks

I Unified transformation
I Unimodular matrix theory: applicable to loop interchange,

reversal, and skew
I Template-based: applicable to unimodular, tiling, coalescing,

and parallel loop execution of perfect loop nests
I More ambitious (and expensive) techniques available

I Searching the transformation space
I Target machine represented as a set of features
I Search based on hierarchical heuristics



Compiler evaluation

I How can we compare one compiler to another?

I Remains an unsolved problem

I No universally agreed upon metrics

I Results are architecture specific

I Results are application specific



Benchmarks

I Benchmarks have received much attention

I Popular benchmarks:
I SPEC
I SPLASH
I NAS
I The Perfect Club



Benchmarks

I Benchmarks have received much attention
I Popular benchmarks:

I SPEC
I SPLASH
I NAS
I The Perfect Club



Code characteristics

I A number of studies focus on the applications

I Early studies by Knuth in 1971

I Classical results:
I Most of the time is spent in a small fraction of the code
I 95% of all do loops incremented their index by 1
I 40% of all do loops contained only one statement



Code characteristics

I A number of studies focus on the applications

I Early studies by Knuth in 1971
I Classical results:

I Most of the time is spent in a small fraction of the code
I 95% of all do loops incremented their index by 1
I 40% of all do loops contained only one statement



Compiler effectiveness

I How can we evaluate the effectiveness of a compiler?

I Examine compiler’s output by hand
I Compare its performance to other compilers
I Compare full- with no- optimization
I Compare parallel and uniprocessor versions of an application



Compiler effectiveness

I How can we evaluate the effectiveness of a compiler?
I Examine compiler’s output by hand
I Compare its performance to other compilers
I Compare full- with no- optimization
I Compare parallel and uniprocessor versions of an application



Instruction-level parallelism

I What is the potential gain of instruction-level parallelism?

I A number of studies have tried to find an upper bound.

I Some where very pessimistic (Flynn bottleneck)
I Looked only within the scope of a basic block

I Parallelism can be exploited across block boundaries
I However some approaches required huge amounts of hardware
I Many suggested that general applications are much harder to

parallelize than scientific applications
I VLIW architectures showed promise



Instruction-level parallelism

I What is the potential gain of instruction-level parallelism?

I A number of studies have tried to find an upper bound.
I Some where very pessimistic (Flynn bottleneck)

I Looked only within the scope of a basic block

I Parallelism can be exploited across block boundaries
I However some approaches required huge amounts of hardware
I Many suggested that general applications are much harder to

parallelize than scientific applications
I VLIW architectures showed promise



Instruction-level parallelism

I What is the potential gain of instruction-level parallelism?

I A number of studies have tried to find an upper bound.
I Some where very pessimistic (Flynn bottleneck)

I Looked only within the scope of a basic block

I Parallelism can be exploited across block boundaries
I However some approaches required huge amounts of hardware
I Many suggested that general applications are much harder to

parallelize than scientific applications
I VLIW architectures showed promise



Conclusion

I Where are the optimizations with the biggest impact?

I Loops:
I Expose parallelism over a loop
I Reduce the number of instructions in a loop body
I Improve memory locality over the loop
I Reduce loop overhead



Conclusion

I Where are the optimizations with the biggest impact?
I Loops:

I Expose parallelism over a loop
I Reduce the number of instructions in a loop body
I Improve memory locality over the loop
I Reduce loop overhead



Summing it all up

I We have described a large number of transformations

I Many of them promise large performance gains

I However:
I Current optimizing compilers lack an organizing principle
I Their tuning is more of a black-art than a science
I Often a transformation is performed only to be undone by a

subsequent one
I Object oriented paradigms present significant challenges for

optimization



Summing it all up

I We have described a large number of transformations

I Many of them promise large performance gains
I However:

I Current optimizing compilers lack an organizing principle
I Their tuning is more of a black-art than a science
I Often a transformation is performed only to be undone by a

subsequent one
I Object oriented paradigms present significant challenges for

optimization



Current issues

I Scalability

I Automatic parallelization has yet to yield any concrete results

I How about learning which optimizations to perform?
I There seems to be no work on this approach
I It would be very complicated
I One of its prerequisites would be the ability to measure a

solution’s success
I However that is an unsolved problem as well



Current issues

I Scalability

I Automatic parallelization has yet to yield any concrete results
I How about learning which optimizations to perform?

I There seems to be no work on this approach
I It would be very complicated
I One of its prerequisites would be the ability to measure a

solution’s success
I However that is an unsolved problem as well



Discussion

I What do you think of compiler technology?

I Do they have a really hard problem?

I Are they approaching it correctly?

I Should languages become more constrained to aid
optimization?

I What do the failures of parallel compilers mean for
frameworks such as map-reduce?

I How does the content of this paper translate to your research?



Discussion

I What do you think of compiler technology?

I Do they have a really hard problem?

I Are they approaching it correctly?

I Should languages become more constrained to aid
optimization?

I What do the failures of parallel compilers mean for
frameworks such as map-reduce?

I How does the content of this paper translate to your research?



Discussion

I What do you think of compiler technology?

I Do they have a really hard problem?

I Are they approaching it correctly?

I Should languages become more constrained to aid
optimization?

I What do the failures of parallel compilers mean for
frameworks such as map-reduce?

I How does the content of this paper translate to your research?



Thank you for your attention

I Thank you for your attention

I Questions?


