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Introduction

• What is JIT compilation?
• Any translation performed dynamically
• After a program has started execution

• Why do we care?
• May offer advantages over static compilation and translation
• Has received much attention in recent years
• Many concepts have been reinvented
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Advantages

• Advantages over compiled programs
• Typically smaller in size
• More portable
• Access to run-time information

• Advantages over interpreted programs
• Faster execution
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History

• 1960-1969
• Earliest published work

• 1970-1979
• Prioritize space optimizations
• Optimization of “hot spots”

• 1980-1989
• JIT similar to memory management
• Aggressive JIT customization

• 1990-2000
• Spreading out compilation time
• Slim binaries
• Staged compilation
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History

• 2000-today
• Huge investment of time and money into JIT
• Concurrent development of many approaches
• Reinvention of many concepts
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Space optimizations

• Mixed code
• Compile “hot spots” only
• Fine grained mixture implied

• Caveats
• Both a compiler and interpreter need to be in memory
• Both a compiler and interpreter need to be maintained
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Space optimizations

• Throw-away code
• Compile a block
• Execute it
• Discard the code

• Alternatively
• Keep a fixed-size cache of program code

• Deferred compilation of uncommon cases
• Some cases may never be compiled during typical execution
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Dynamic and adaptive optimization

• Collect run-time information
• Utilize runtime type information
• Maintain execution counters
• Perform optimizations in order of increasing complexity
• Concentrate effort on hot-spots

• Considerations
• “What” to optimize is more important than “when”
• The code that should be optimized may not be the one that

triggered the optimization
• Inlining may be the answer to frequently called short methods
• Cache coherency issues may arise
• Implicit or explicit invocation of JIT compiler (Erlang)
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Dynamic and adaptive optimization

• Alternatively
• Start by profiling
• Amortize profiling cost over program execution
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Continuous run-time optimization

• Input may vary over time
• Similar in spirit to cache strategies
• Optimize based on the most recent input patterns
• Dynamically reorder code

• Possible extensions
• Dynamically optimize based on available resources
• The resources available may change
• Resource utilization may change due to contention
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Customization

• Customize frequently executed methods
• Many classical compiler techniques apply
• Constant propagation/folding
• Dead code elimination

• Specialize interpreter’s instructions
• Reduce the overhead of instruction dispatch
• Yield opportunities for macro opcode optimization
• The speedup obtained is significant
• Does not compete with compilation
• May not be as fruitful as other approaches
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Improving the user experience

• Avoid large compilation spikes
• Large periods of unresponsiveness degrade user experience
• Favor response time over total execution time
• Perform optimizations in stages

• Spread out compilation time
• Two or more closely followed compilation pauses
• Can appear as one large pause

• Deferred compilation of uncommon cases
• Compile only the current execution path
• Set up stubs for non-compiled cases
• Responsiveness can improve significantly for large case blocks

• Fast code generation
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Machine independent code representation

• Slim binary, Java, etc.

• Same executable vs heterogeneous substrate computing
environment

• Slim binary: a high-level, machine independent program
module

• Generate executable on-the-fly when loaded

• Generate module at once is superior to method-at-a-time
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Simulators

• Running executable code for one architecture on another
• Highly specialized with respect to source and target

• Categories
• Interpreters: First generation
• Dynamically translated instructions: Second generation
• Dynamically translated blocks: Third generation

• Block-at-a-time or page-at-a-time

• Dynamically translated paths: Fourth generation
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Fourth generation

• Predominant in recent literature

• Common techniques
• Profiled execution
• Hot path detection: counter, code structure, sample PC
• Code generation, optimization and verification
• “Bail-out” mechanism

• Recurring themes
• Binary to binary translation
• Legacy to VLIW code translation
• Target architecture provide extra resource
• Can these scale?
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Classification of JIT systems

• Invocation
• Implicit: transparent to the user
• Explicit: Allows for better control
• Currently implicit invocation systems dominate

• Executability
• Monoexecutable
• Polyexecutable
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Classification of JIT systems

• Concurrency
• Concurrent execution and compilation
• Execution stalls in order to compile
• Concurrent systems are becoming more important

• Hard real time systems
• Little research in this area
• Usually developed using worst case analysis
• Implicit compiler invocation incompatible
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Issues faced by JIT tools

• Binary code generation
• Rife with opportunities for error
• Lots of bookkeeping tasks

• Cache coherence
• Cache and memory can become out of sync
• More complicated on shared memory multiprocessors

• Execution
• Restrictions on where executable code can reside
• Restrictions on which parts of memory can be edited
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Java

• Static compilation to bytecode

• JIT compilation from bytecode to machine code

• Originally only interpreted
• Surprisingly slow

• Different implementations have surfaced
• Stack based, register based
• Some skip the bytecode phase altogether

• Was the driving force for much research in JIT

• Other languages are now targeting the JVM
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Java

• Other JIT compilation approaches
• Compile-only strategy
• Translate byte code into Self code to leverage existing

optimization
• Code annotation to facilitate code optimization prior to

run-time
• Continuous compilation for Java
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Conclusion

• JIT compilation is an old technique

• It has received much attention in recent years

• It can result in smaller footprint than compiled code

• It has the potential to achieve
• Better performance than interpreted code
• Or even compiled code

• It can provide platform independence
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Thank you for your attention

• Thank you for your attention

• Questions?
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