
Introduction Techniques Simulators Classification and Issues of JIT systems Java Conclusion

A Brief History of Just-In-Time

Presented by
Xuanran Zong and Jason Pazis

March 30, 2010



Introduction Techniques Simulators Classification and Issues of JIT systems Java Conclusion

Introduction

• What is JIT compilation?
• Any translation performed dynamically
• After a program has started execution

• Why do we care?
• May offer advantages over static compilation and translation
• Has received much attention in recent years
• Many concepts have been reinvented



Introduction Techniques Simulators Classification and Issues of JIT systems Java Conclusion

Introduction

• What is JIT compilation?
• Any translation performed dynamically
• After a program has started execution

• Why do we care?
• May offer advantages over static compilation and translation
• Has received much attention in recent years
• Many concepts have been reinvented



Introduction Techniques Simulators Classification and Issues of JIT systems Java Conclusion

Advantages

• Advantages over compiled programs
• Typically smaller in size
• More portable
• Access to run-time information

• Advantages over interpreted programs
• Faster execution



Introduction Techniques Simulators Classification and Issues of JIT systems Java Conclusion

Advantages

• Advantages over compiled programs
• Typically smaller in size
• More portable
• Access to run-time information

• Advantages over interpreted programs
• Faster execution



Introduction Techniques Simulators Classification and Issues of JIT systems Java Conclusion

History

• 1960-1969
• Earliest published work

• 1970-1979
• Prioritize space optimizations
• Optimization of “hot spots”

• 1980-1989
• JIT similar to memory management
• Aggressive JIT customization

• 1990-2000
• Spreading out compilation time
• Slim binaries
• Staged compilation



Introduction Techniques Simulators Classification and Issues of JIT systems Java Conclusion

History

• 2000-today
• Huge investment of time and money into JIT
• Concurrent development of many approaches
• Reinvention of many concepts



Introduction Techniques Simulators Classification and Issues of JIT systems Java Conclusion

Space optimizations

• Mixed code
• Compile “hot spots” only
• Fine grained mixture implied

• Caveats
• Both a compiler and interpreter need to be in memory
• Both a compiler and interpreter need to be maintained



Introduction Techniques Simulators Classification and Issues of JIT systems Java Conclusion

Space optimizations

• Mixed code
• Compile “hot spots” only
• Fine grained mixture implied

• Caveats
• Both a compiler and interpreter need to be in memory
• Both a compiler and interpreter need to be maintained



Introduction Techniques Simulators Classification and Issues of JIT systems Java Conclusion

Space optimizations

• Throw-away code
• Compile a block
• Execute it
• Discard the code

• Alternatively
• Keep a fixed-size cache of program code

• Deferred compilation of uncommon cases
• Some cases may never be compiled during typical execution



Introduction Techniques Simulators Classification and Issues of JIT systems Java Conclusion

Space optimizations

• Throw-away code
• Compile a block
• Execute it
• Discard the code

• Alternatively
• Keep a fixed-size cache of program code

• Deferred compilation of uncommon cases
• Some cases may never be compiled during typical execution



Introduction Techniques Simulators Classification and Issues of JIT systems Java Conclusion

Space optimizations

• Throw-away code
• Compile a block
• Execute it
• Discard the code

• Alternatively
• Keep a fixed-size cache of program code

• Deferred compilation of uncommon cases
• Some cases may never be compiled during typical execution



Introduction Techniques Simulators Classification and Issues of JIT systems Java Conclusion

Dynamic and adaptive optimization

• Collect run-time information
• Utilize runtime type information
• Maintain execution counters
• Perform optimizations in order of increasing complexity
• Concentrate effort on hot-spots

• Considerations
• “What” to optimize is more important than “when”
• The code that should be optimized may not be the one that

triggered the optimization
• Inlining may be the answer to frequently called short methods
• Cache coherency issues may arise
• Implicit or explicit invocation of JIT compiler (Erlang)



Introduction Techniques Simulators Classification and Issues of JIT systems Java Conclusion

Dynamic and adaptive optimization

• Collect run-time information
• Utilize runtime type information
• Maintain execution counters
• Perform optimizations in order of increasing complexity
• Concentrate effort on hot-spots

• Considerations
• “What” to optimize is more important than “when”
• The code that should be optimized may not be the one that

triggered the optimization
• Inlining may be the answer to frequently called short methods
• Cache coherency issues may arise
• Implicit or explicit invocation of JIT compiler (Erlang)



Introduction Techniques Simulators Classification and Issues of JIT systems Java Conclusion

Dynamic and adaptive optimization

• Alternatively
• Start by profiling
• Amortize profiling cost over program execution



Introduction Techniques Simulators Classification and Issues of JIT systems Java Conclusion

Continuous run-time optimization

• Input may vary over time
• Similar in spirit to cache strategies
• Optimize based on the most recent input patterns
• Dynamically reorder code

• Possible extensions
• Dynamically optimize based on available resources
• The resources available may change
• Resource utilization may change due to contention



Introduction Techniques Simulators Classification and Issues of JIT systems Java Conclusion

Continuous run-time optimization

• Input may vary over time
• Similar in spirit to cache strategies
• Optimize based on the most recent input patterns
• Dynamically reorder code

• Possible extensions
• Dynamically optimize based on available resources
• The resources available may change
• Resource utilization may change due to contention



Introduction Techniques Simulators Classification and Issues of JIT systems Java Conclusion

Customization

• Customize frequently executed methods
• Many classical compiler techniques apply
• Constant propagation/folding
• Dead code elimination

• Specialize interpreter’s instructions
• Reduce the overhead of instruction dispatch
• Yield opportunities for macro opcode optimization
• The speedup obtained is significant
• Does not compete with compilation
• May not be as fruitful as other approaches



Introduction Techniques Simulators Classification and Issues of JIT systems Java Conclusion

Customization

• Customize frequently executed methods
• Many classical compiler techniques apply
• Constant propagation/folding
• Dead code elimination

• Specialize interpreter’s instructions
• Reduce the overhead of instruction dispatch
• Yield opportunities for macro opcode optimization
• The speedup obtained is significant
• Does not compete with compilation
• May not be as fruitful as other approaches



Introduction Techniques Simulators Classification and Issues of JIT systems Java Conclusion

Improving the user experience

• Avoid large compilation spikes
• Large periods of unresponsiveness degrade user experience
• Favor response time over total execution time
• Perform optimizations in stages

• Spread out compilation time
• Two or more closely followed compilation pauses
• Can appear as one large pause

• Deferred compilation of uncommon cases
• Compile only the current execution path
• Set up stubs for non-compiled cases
• Responsiveness can improve significantly for large case blocks

• Fast code generation



Introduction Techniques Simulators Classification and Issues of JIT systems Java Conclusion

Improving the user experience

• Avoid large compilation spikes
• Large periods of unresponsiveness degrade user experience
• Favor response time over total execution time
• Perform optimizations in stages

• Spread out compilation time
• Two or more closely followed compilation pauses
• Can appear as one large pause

• Deferred compilation of uncommon cases
• Compile only the current execution path
• Set up stubs for non-compiled cases
• Responsiveness can improve significantly for large case blocks

• Fast code generation



Introduction Techniques Simulators Classification and Issues of JIT systems Java Conclusion

Improving the user experience

• Avoid large compilation spikes
• Large periods of unresponsiveness degrade user experience
• Favor response time over total execution time
• Perform optimizations in stages

• Spread out compilation time
• Two or more closely followed compilation pauses
• Can appear as one large pause

• Deferred compilation of uncommon cases
• Compile only the current execution path
• Set up stubs for non-compiled cases
• Responsiveness can improve significantly for large case blocks

• Fast code generation



Introduction Techniques Simulators Classification and Issues of JIT systems Java Conclusion

Machine independent code representation

• Slim binary, Java, etc.

• Same executable vs heterogeneous substrate computing
environment

• Slim binary: a high-level, machine independent program
module

• Generate executable on-the-fly when loaded

• Generate module at once is superior to method-at-a-time



Introduction Techniques Simulators Classification and Issues of JIT systems Java Conclusion

Simulators

• Running executable code for one architecture on another
• Highly specialized with respect to source and target

• Categories
• Interpreters: First generation
• Dynamically translated instructions: Second generation
• Dynamically translated blocks: Third generation

• Block-at-a-time or page-at-a-time

• Dynamically translated paths: Fourth generation



Introduction Techniques Simulators Classification and Issues of JIT systems Java Conclusion

Simulators

• Running executable code for one architecture on another
• Highly specialized with respect to source and target

• Categories
• Interpreters: First generation
• Dynamically translated instructions: Second generation
• Dynamically translated blocks: Third generation

• Block-at-a-time or page-at-a-time

• Dynamically translated paths: Fourth generation



Introduction Techniques Simulators Classification and Issues of JIT systems Java Conclusion

Fourth generation

• Predominant in recent literature

• Common techniques
• Profiled execution
• Hot path detection: counter, code structure, sample PC
• Code generation, optimization and verification
• “Bail-out” mechanism

• Recurring themes
• Binary to binary translation
• Legacy to VLIW code translation
• Target architecture provide extra resource
• Can these scale?



Introduction Techniques Simulators Classification and Issues of JIT systems Java Conclusion

Fourth generation

• Predominant in recent literature

• Common techniques
• Profiled execution
• Hot path detection: counter, code structure, sample PC
• Code generation, optimization and verification
• “Bail-out” mechanism

• Recurring themes
• Binary to binary translation
• Legacy to VLIW code translation
• Target architecture provide extra resource
• Can these scale?



Introduction Techniques Simulators Classification and Issues of JIT systems Java Conclusion

Fourth generation

• Predominant in recent literature

• Common techniques
• Profiled execution
• Hot path detection: counter, code structure, sample PC
• Code generation, optimization and verification
• “Bail-out” mechanism

• Recurring themes
• Binary to binary translation
• Legacy to VLIW code translation
• Target architecture provide extra resource
• Can these scale?



Introduction Techniques Simulators Classification and Issues of JIT systems Java Conclusion

Classification of JIT systems

• Invocation
• Implicit: transparent to the user
• Explicit: Allows for better control
• Currently implicit invocation systems dominate

• Executability
• Monoexecutable
• Polyexecutable



Introduction Techniques Simulators Classification and Issues of JIT systems Java Conclusion

Classification of JIT systems

• Invocation
• Implicit: transparent to the user
• Explicit: Allows for better control
• Currently implicit invocation systems dominate

• Executability
• Monoexecutable
• Polyexecutable



Introduction Techniques Simulators Classification and Issues of JIT systems Java Conclusion

Classification of JIT systems

• Concurrency
• Concurrent execution and compilation
• Execution stalls in order to compile
• Concurrent systems are becoming more important

• Hard real time systems
• Little research in this area
• Usually developed using worst case analysis
• Implicit compiler invocation incompatible



Introduction Techniques Simulators Classification and Issues of JIT systems Java Conclusion

Classification of JIT systems

• Concurrency
• Concurrent execution and compilation
• Execution stalls in order to compile
• Concurrent systems are becoming more important

• Hard real time systems
• Little research in this area
• Usually developed using worst case analysis
• Implicit compiler invocation incompatible



Introduction Techniques Simulators Classification and Issues of JIT systems Java Conclusion

Issues faced by JIT tools

• Binary code generation
• Rife with opportunities for error
• Lots of bookkeeping tasks

• Cache coherence
• Cache and memory can become out of sync
• More complicated on shared memory multiprocessors

• Execution
• Restrictions on where executable code can reside
• Restrictions on which parts of memory can be edited



Introduction Techniques Simulators Classification and Issues of JIT systems Java Conclusion

Issues faced by JIT tools

• Binary code generation
• Rife with opportunities for error
• Lots of bookkeeping tasks

• Cache coherence
• Cache and memory can become out of sync
• More complicated on shared memory multiprocessors

• Execution
• Restrictions on where executable code can reside
• Restrictions on which parts of memory can be edited



Introduction Techniques Simulators Classification and Issues of JIT systems Java Conclusion

Issues faced by JIT tools

• Binary code generation
• Rife with opportunities for error
• Lots of bookkeeping tasks

• Cache coherence
• Cache and memory can become out of sync
• More complicated on shared memory multiprocessors

• Execution
• Restrictions on where executable code can reside
• Restrictions on which parts of memory can be edited



Introduction Techniques Simulators Classification and Issues of JIT systems Java Conclusion

Java

• Static compilation to bytecode

• JIT compilation from bytecode to machine code

• Originally only interpreted
• Surprisingly slow

• Different implementations have surfaced
• Stack based, register based
• Some skip the bytecode phase altogether

• Was the driving force for much research in JIT

• Other languages are now targeting the JVM



Introduction Techniques Simulators Classification and Issues of JIT systems Java Conclusion

Java

• Other JIT compilation approaches
• Compile-only strategy
• Translate byte code into Self code to leverage existing

optimization
• Code annotation to facilitate code optimization prior to

run-time
• Continuous compilation for Java



Introduction Techniques Simulators Classification and Issues of JIT systems Java Conclusion

Conclusion

• JIT compilation is an old technique

• It has received much attention in recent years

• It can result in smaller footprint than compiled code

• It has the potential to achieve
• Better performance than interpreted code
• Or even compiled code

• It can provide platform independence



Introduction Techniques Simulators Classification and Issues of JIT systems Java Conclusion

Thank you for your attention

• Thank you for your attention

• Questions?


	Introduction
	Introduction
	Advantages
	History
	History

	Techniques
	Space optimizations
	Dynamic and adaptive optimization
	Continuous run-time optimization
	Customization
	Improving the user experience
	Machine independent code representation

	Simulators
	Simulators
	Fourth generation

	Classification and Issues of JIT systems
	Classification of JIT systems
	Issues faced by JIT tools

	Java
	Java

	Conclusion
	Conclusion
	Thank you for your attention


