
Speeding up Array Query
Processing by Just-In-Time

Compilation
Constantin Jucovschi Peter

Baumann Sorin Stancu-Mara

Big Picture

• Interpreted languages
– Slow for complex computation

• Array DBMS
– multidimensional array modeling and query

• Many operations being applied to many arrays

• JIT compilation to opt interpreted array
query
– Group query nodes into complex operation

nodes

scenario

• Array DB similar to interpreted
language
– ad-hoc queries with lots of operation

steps
• each operation applied to many array

elements in eval

– Web map navigation

rasdaman

servlets
client requests in WMS

rasql

select png(
scale(ap[...],[0:350,0:350])

* {1, 1, 1}
 overlay

bit(scale(tm[...],[0:350,0:350]),2)
* {255, 0, 0}

)
from AirbornePhoto as ap,

ThematicMap as tm

Bottleneck

• simultaneously requested multi-
layers higher overhead, array
DBMS CPU bound

Solution for complex query
evluation

• hand-crafted code optimization in C/C++, Java
– high performance, little interpreting overhead
– user to implement & use stored procedures to identify

potential part vs. optimizer responsiblity

• heuristic rewriting to reduce operations
– Semantically equivalent sequence of op
– reorder/replace/pre-calculate/join query tree nodes

• Streaming intermediate results: less query
evaluation and mem

• interpreted paradigm  exploit JIT to group ops

2 “new” techs for array
query

• merges atomic op nodes in the query tree into a
complex op node
– reduced management: less node switching,1 iterator

instead of 1 per op

– Not for op sequences constitutings an infinite set

• JIT node compilation:
– Caching generated library compiled from C codes

• Omit compile: great for massive uniform query loads
– Map navigation

Opportunity

• Frequent highly predefined query
pattern
– surf the map
– fetches several mosaic elements to

achieve a smooth zoom and pan
experience

Loop fusion

select avg_cells(1.8*A + 32) - B
from A, B

Loop fusion

select avg_cells(1.8*A + 32) - B
from A, B

T = 3Talloc + 4Titer + 4nm Top

Loop fusion

1. avg = 0;
2. for i in Dom(A)
3. avg += A[i]*1.8 + 32;
4. end
5. avg /= size(A);
6. for i in Dom(B)
7. result[i] = avg - B[i];
8. end

T = Talloc + 2Titer + 4nm Top

Loop fusion

GroupIterator generation
algorithm

Query fragments’ dynamic
compilation

• Cache compiled query part
– WMS’s fixed query structure  high hit

Query fragments’ dynamic
compilation

• Cache compiled query part
– WMS’s fixed query structure  high hit

function genCCode(node)
{

if (node.type == MULTIPLICATION)
{

(code1, var1) = genCCode(node.child(0));
(code2, var2) = genCCode(node.child(1));
res_var = genNewVariableName;
code = code1 + code2;
code += getResultType() + " " + res_var

+ "=" + var1 + "*" + var2 + ";";
return (code, res_var);

}
else if ...

}

Query fragments’ dynamic
compilation

• Cache compiled query part
– WMS’s fixed query structure  high hit

void process(int units, void *data,void *result)
{

void* dataIter = data;
void* resIter = result;
for (int iter=0; iter<units;++iter, dataIter+=4, resIter +=12)
{

float var0 = *(float*)dataIter;
bool c = (var0>-15) && (var0<0);
((int)resIter) = 10*c;
((int)resIter+4) = 40*c;
((int)resIter+8) = 100*c;

}
}

Performance

cold: C program need to be generated & compiled prior query eval
hot: shared lib for compiled code ready for loading and execution

Standalone Performance

Standalone: query tree and data loaded. only processing time

Conclusion

• loop fusion opt
– Less memory usage, better locality
– Interpreter overhead for each unit cell

op

• dynamic compilation for unit
operations
– Compilation and library loading

overheads

Future work

• graphic card support in query
evaluation

• memory operation: a piece of cake?
• Fig 3/4-->disk and network latency

	Speeding up Array Query Processing by Just-In-Time Compilation
	Big Picture
	scenario
	rasdaman
	Bottleneck
	Solution for complex query evluation
	2 “new” techs for array query
	Opportunity
	Loop fusion
	Slide 10
	Slide 11
	Slide 12
	Query fragments’ dynamic compilation
	Slide 14
	Slide 15
	Performance
	Slide 17
	Conclusion
	Future work

