Algebraic Optimization of Computations over Scientific Databases

Risi Thonangi CPS 296.1

Scientific Computation Example

• Extrapolation

- Polynomial curve-fitting; gaussian mixtures; ...
- · Other examples
 - Interpolation, Selection, FFT, ...

Running scientific computation

- Difficult because ...
 - Various logical and physical operators exist
 - Coding is an involved job
 - Data format conversions need care

Database approach to scientific data

- Makes scientific computing easier
- Other goodies offered by database systems
 - Extensibility
 - Support for query optimization
 - Logical and Physical data independence

Next ...

- Supporting scientific computing in Volcano database system
 - 1. Data types in the system
 - 2. Supported logical and physical operators
 - 3. Handling query optimization
 - Transformations and implementation rules
- An example for scientific query optimization

1. Data types

- Sets
 - Similar to relations
 - Logical properties: schema, cardinality, ...
- Time series
 - Similar to a relation but contains a time attribute
 - Logical properties: start and stop times, and fixed time delta
- Spectra
 - Similar to a relation but contains a frequency attribute
 - Logical properties: frequency range and fixed frequency delta

2. Logical and physical operators

• List of relational and scientific operators

Support for physical operators

- Iterator-style execution
 - Volcano's existing iterators for most operators
 - New window-iterator added to support windowing operators

3. Handling query optimization

- Made easy by the extensible volcano query optimizer generator
- Optimizer generator accepts following inputs
 - Logical and physical operators
 - Transformation and implementation rules
 - Cost functions
 - Logical and physical properties

- ...

Handling query optimization: Transformations

- Logical transformations
 - Helps the optimizer find equivalent query expressions
 - Encoded as rules
 - Care required in order to handle effects of numerical accuracy and stability
- Example transformations
 - All standard relational transformations

Handling query optimization: Transformations (contd.)

- Example transformations (contd.)
 - All standard relational transformations
 - Transformations involving the sampling operator

- Time series and spectra operator transformations

Handling query optimization: Transformations (contd.)

- Example transformations (contd.)
 - Interpolations and merges

- Difficult to transform operators
 - Digital filtering operators

Handling query optimization: Implementation rules

- Implementation rules help convert a logical plan to physical plans
- Encoded as rules
- Examples
 - All relational rules
 - Polynomial curve fitting for interpolation
 - Special case execution to compute two FFTs in one invocation
- To resolve between multiple implementation rules, use
 - Cost functionsHeuristics

Summary

- Database approach to time-series data
 - Benefits include data independence, query optimization, ...
- Can accuracy be a part of query optimization?
 - How to account for loss of accuracies across multiple query operators?
- How about other types of scientific data?
 - Does relational approach work?