4/15/2010

Pig

Peter, Gang and Ronie

04/13/10

Introduction

¢ Whatis Pig?

— An open-source high-level dataflow system

— Provides a simple language for queries and data manipulation,
Pig Latin, that is compiled into map-reduce jobs that are run on
Hadoop

— Pig Latin combines the high-level data manipulation constructs
of SQL with the procedural programming of map-reduce

¢ Why is it important?

— Companies and organizations like Yahoo, Google and Microsoft
are collecting enormous data sets in the form of click streams,
search logs, and web crawls

— Some form of ad-hoc processing and analysis of all of this
information is required

Existing Solutions

¢ Parallel database products (ex: Teradata)
— Expensive at web scale
— Data analysis programmers find the declarative SQL
queries to be unnatural and restrictive
* Raw map-reduce
— Complex n-stage dataflows are not supported; joins
and related tasks require workarounds or custom
implementations
— Resulting code is difficult to reuse and maintain; shifts
focus and attention away from data analysis

Language Features

« Several options for user-interaction
— Interactive mode (console)
— Batch mode (prepared script files containing Pig Latin commands)
— Embedded mode (execute Pig Latin commands within a Java program)
* Built primarily for scan-centric workloads and read-only data
analysis
— Easily operates on both structured and schema-less, unstructured data
— Transactional consistency and index-based lookups not required
— Data curation and schema management can be overkill
Flexible, fully nested data model
Extensive UDF support
— Currently must be written in Java
— Can be written for filtering, grouping, per-tuple processing, loading
and storing

Pig Latin vs. SQL

¢ Pig Latin is procedural (dataflow programming model)

— Step-by-step query style is much cleaner and easier to write and
follow than trying to wrap everything into a single block of SQL

Source:
piglatin and sal fo hum

Pig Latin vs. SQL (continued)

Lazy evaluation (data not processed prior to STORE command)
Data can be stored at any point during the pipeline
An execution plan can be explicitly defined

— No need to rely on the system to choose the desired plan via optimizer
hints

Pipeline splits are supported
— SQL requires the join to be run twice or materialized as an intermediate result

pig_latin_and_sal_fo htm

Data Model

* Supports four basic types

— Atom: a simple atomic value (int, long, double, string)
* ex: ‘Peter’

— Tuple: a sequence of fields that can be any of the data
types
* ex: (‘Peter’, 14)
— Bag: a collection of tuples of potentially varying
structures, can contain duplicates
* ex: {(‘Peter’), (‘Bob’, (14, 21))}

— Map: an associative array, the key must be a chararray
but the value can be any type

Pig Latin

¢ FOREACH-GENERATE (per-tuple processing)

— Iterates over every input tuple in the bag, producing
one output each, allowing efficient parallel
implementation

wxpasdnd_qoeries ~ FUREACH quaries GENERATE
userla, sxpandesryquaryString) ;

— Expressions within the
GENERATE clause can
take the form of the any
of these expressions

4/15/2010

Data Model (continued)

¢ By default Pig treats undeclared fields as
bytearrays (collection of uninterpreted bytes)
¢ Can infer a field’s type based on:
— Use of operators that expect a certain type of field
— UDFs with a known or explicitly set return type

— Schema information provided by a LOAD function
or explicitly declared using an AS clause

¢ Type conversion is lazy

Pig Latin (continued)

+ (CO)GROUP vs. JOIN

~ COGROUP takes advantage of nested data structure (combination of GROUP BY and JOIN)

— User can choose to go through with cross-product for a join or perform aggregation on the
nested bags

Erosped_data COSROUP resslts BT
ph—

revemse BY g

Pig Latin (continued)

* LOAD / STORE

— Default implementation expects/outputs to tab-
delimited plain text file

A5 {userld, queryStrizg, tizestasp);
e Other commands

— FILTER, ORDER, DISTINCT, CROSS, UNION
* Nested operations

— FILTER, ORDER and DISTINCT can be nested within a

FOREACH statement to process nested bags within
tuples

USING myStorel);

Compilation

Pig Latin Programs | + Query Parser - Logical Plan

| Semantic Checking < Logical Plan
Logical Optimizer [Optimized Logical Pnn
:loglc,al ta Physical Translator :- Physical Plan

[Physical To MR Translator ke MapReduce Plan
.Man Reduce Launcher 1

Create a job jar 1o be submitted to hadoop cluster

04/13/10

Parsing

« Type checking with schema
« References verifying

Logic plan generating

« One-to-one fashion
« Independent of execution platform

« Limited optimization

04/13/10

4/15/2010

Logic Plan

A=LOAD 'file1' AS (x, y, 2);

B=LOAD 'file2' AS (t, u, v);
C=FILTERA byy>0;

D=JOIN CBY x, BBY u;
E=GROUP D BY z;

F=FOREACH E GENERATE
group, COUNT(D);

STORE F INTO 'output';

FOREACH

04/13/10

Physical Plan

« 1:1 correspondence with most logical
operators
« Except for:
« DISTINCT
« (CO)GROUP
« JOIN
« ORDER

04/13/10

LOAD

GLOBAL REARRANGE
PACKAGE

GROUP

04/13/10

Physical Optimization

« Always use combiner for pre-aggregation
« Insert SPLIT to re-use intermediate result

« Early projection

04/13/10

MapReduce Plan

« Determine MapReduce boundaries
« GLOBAL REARRANGE

« Some operations are done by MapReduce
framework

« Coalesce other operators into Map & Reduce
stages

« Generate job jar file

04/13/10

LOCAL REARRANGE

/—

Reduce PACKAGE
FOREACH

LOCAL REARRANGE

PACKAGE

FOREACH

LOCAL REARRANGE

PACKAGE
FOREACH

FOREACH

04/13/10

4/15/2010

Branching Plans

« Read the dataset once and process it in
multiple ways

« Good
« Eliminate the cost to read it multiple times
« Bad

« Reduce the amount of memory for each stream

04/13/10

Branching Plans

MaP
SPUT LOCAL REARRANGE LOCAL REARRANGE

FILTER FILTER
T

FOREACH FOREACH

04/13/10

Physical plan execution

¢ Executing the portion of a physical plan within

a Map or Reduce stage

* Push vs. Pull (iterator) Model

¢ Push
complicated API;
multiple threads needed

Physical plan execution (contd.)

e Pull
simple API; single thread

* Two drawbacks
bag materialization — “push” can control
combiner within the operator
branch point — operators at branch point may
face buffering issue

Nested programs example

clicks = LOAD “clicks”

AS (userid, pageid, linkid, viewedat);
byuser = GROUP clicks BY userid;
result = FOREACH byuser {

uniqPages = DISTINCT clicks.pageid;
unigLinks = DISTINCT clicks.linkid;
GENERATE group, COUNT(unigPages),
COUNT(uniqLinks);

X

¢ Tuples grouped by userid
* For each bag of a user, nested program is run

* For each DISTINCT operator, a cursor is
initialized

4/15/2010

Memory management

¢ Java memory management
NO low-level control over allocation and
deallocation

¢ Intermediate results exceed available memory
* Memory manager: a list of Pig bags in a JVM

Spill old bags and perform Garbage collection:
when a new bag is added to the list;
when the memory runs too low

New strategy (from Pig Manual)

* For Pig 0.6.0, the strategy for how Pig decides
when to spill bags to disk is changed.

¢ In the past, Pig tried to figure out when an
application was getting close to memory limit
and then spill at that time.

* However, because Java does not include an
accurate way to determine when to spill, Pig
often ran out of memory.

New strategy (from Pig Manual)

¢ |n the current version, allocate a fix amount of
memory (10% of available memory by default)
to store bags and spill to disk as soon as the
memory limit is reached.

* This is very similar to how Hadoop decides
when to spill data accumulated by the
combiner. (Also with mapper output and
reducer input!)

Streaming

¢ Allows data to be pushed through external
executables

Example:
A = LOAD "data“;
B = STREAM A THROUGH “stream.pl -n 5%;

Due to asynchronous behavior of external
executables, each STREAM operator will
create two threads for feeding and consuming
data from external executables.

Benchmark and Performance

* Pig Mix
representative of jobs in Yahoo!
* Benchmark results

Pig Performance vs Map-Reduce
10 -

w0

50

an

a0 25

an | ‘x L6 15 a

10 .

on L - - L -
Sepl108 Movil08 hnZ009 Feb2)es Agr2008 Jun2eds

Images rom hutp//wiiapache.ore/pig/

Pig problem

* Fragment-replicate; skewed; merge join
¢ User has to know when to use which join

¢ Because... Pig is
domestic animal,
does whatever
you tell it to do.

- Alan Gates

Future work

support more nested operators (current only
FILTER, ORDER, DISTINCT)

Better optimization
order of execution, non-linear

Metadata facility (better knowledge of data)
Parallel job execution (inter-job, currently
intra-job)

Column-storage

4/15/2010

Zebra (from Pig project page)

e Zebra is an access path library for reading and

writing data in a column-oriented fashion.
Zebra functions as an abstraction layer
between your client application and data on
the Hadoop Distributed File System (HDFS).

Discussion

The Good, the Bad, and the Pig
Compare to LINQ/DryadLINQ? SCOPE?
Use outside Yahoo!?

Hybrid system! Local database for physical
execution within a Map or Reduce stage.

