
Compsci 06/101, Spring 2011 14.1

Plan for the week in Compsci 6/101
  Guidance for APTs

  How to leverage the power of Python sorting
  How to 'customize' sorting
  Toward understanding recursion, more later

  Model View Controller and Global Variables
  Making the Jotto program work
  Lightening assignment

  Working to understand the pickle module

Compsci 06/101, Spring 2011 14.2

APTs Sorted and Sortby Frequencies
  What are the organizing principles in SortedFreqs?

  Alphabetized list of unique words?
  Count of number of times each occurs?
  Is efficiency an issue? If so what recourse?

  What are organizing principles in SortByFreqs?
  How do we sort by frequency?
  How do we break ties?
  [(t[1],t[0]) for t in dict.items()]

Compsci 06/101, Spring 2011 14.3

Sorting from an API/Client perspective
  API is Application Programming Interface, what is

this for sorted(..) and .sort() in Python?
  Sorting algorithm is efficient, part of API?
  Sorting algorithm is stable, part of API?
  sorted(list,reverse=True), part of API

  Idiom:
  Sort by two criteria: use a two-pass sort, first is

secondary criteria (e.g., break ties)
[("ant",5),("bat", 4),("cat",5),("dog",4)]
[("ant",5),("cat", 5),("bat",4),("dog",4)]

 Compsci 06/101, Spring 2011 14.4

  Women before men …
  First sort by height, then sort by gender

Stable sorting: respect re-order

Compsci 06/101, Spring 2011 14.5

Python Sort API by example, (see APT)
  Sort by frequency, break ties alphabetically

def sort(data):
 d = {}
 for w in data:
 d[w] = d.get(w,0) + 1
 ts = sorted([(p[1],p[0]) for p in d.items()])
 print ts
 return [t[1] for t in ts]

  How to change to high-to-low: reverse=True
  How to do two-pass: itemgetter(1) from operator

Compsci 06/101, Spring 2011 14.6

Jotto: The Program Architecture
  You write jottoModel.py

  This is the guts, brains, state of the program
  Keeps track of how the game is progressing
  Functions communicate via global state

• Maintain state between function calls

  We provide two views: command-line and GUI

  Allow you to view and control the model
  Both view-controllers: jottoMain.py and

jottoGui.py know about the model, but model
doesn't know about them (atypical MV/MVC)

Compsci 06/101, Spring 2011 14.7

Model View Controller (MVC)

2001  50 
2002  60 
2003  80 
2004  100 
2005  70 
2006  50 
2007  30 
2008  200 
2009  220 
2010  225 

2001

2002

2003

2004

2005

2006

2007

2008

2009

0

50

100

150

200

250

2001 2002 2003 2004 2005 2006 2007 2008 2009 2010

Compsci 06/101, Spring 2011 14.8

What are global variables?
  Accessible to all functions in a module

  Declared as global varname in functions
• Mandatory for writing global variables
• Good idea for reading global variables

  Defined at 'top' of module for reading code

  Why are global variables are bad idea?
  Very difficult to reason about correct code
  Very difficult to extend, modify code
  Non-locality makes maintenance difficult

