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Plan for the week in Compsci 6/101 
  Guidance for APTs 

  How to leverage the power of Python sorting 
  How to 'customize' sorting 
  Toward understanding recursion, more later 

  Model View Controller and Global Variables 
  Making the Jotto program work 
  Lightening assignment 

  Working to understand the pickle module 
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APTs Sorted and Sortby Frequencies 
  What are the organizing principles in SortedFreqs? 

  Alphabetized list of unique words? 
  Count of number of times each occurs? 
  Is efficiency an issue? If so what recourse? 

  What are organizing principles in SortByFreqs? 
  How do we sort by frequency? 
  How do we break ties? 
  [(t[1],t[0]) for t in dict.items()] 
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Sorting from an API/Client perspective 
  API is Application Programming Interface, what is 

this for sorted(..) and .sort() in Python? 
  Sorting algorithm is efficient, part of API? 
  Sorting algorithm is stable, part of API? 
  sorted(list,reverse=True), part of API 

  Idiom: 
  Sort by two criteria: use a two-pass sort, first is 

secondary criteria (e.g., break ties) 
[("ant",5),("bat", 4),("cat",5),("dog",4)] 
[("ant",5),("cat", 5),("bat",4),("dog",4)] 
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  Women before men … 
  First sort by height, then sort by gender 

Stable sorting: respect re-order 
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Python Sort API by example, (see APT) 
  Sort by frequency, break ties alphabetically 
 
def sort(data): 
  d = {} 
  for w in data: 
    d[w] = d.get(w,0) + 1 
  ts = sorted([(p[1],p[0]) for p in d.items()]) 
  print ts 
  return [t[1] for t in ts] 

 
  How to change to high-to-low: reverse=True 
  How to do two-pass: itemgetter(1) from operator 
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Jotto: The Program Architecture 
  You write jottoModel.py 

  This is the guts, brains, state of the program 
  Keeps track of how the game is progressing 
  Functions communicate via global state 

• Maintain state between function calls 

 
  We provide two views: command-line and GUI 

  Allow you to view and control the model 
  Both view-controllers: jottoMain.py and 

jottoGui.py know about the model, but model 
doesn't know about them (atypical MV/MVC) 
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Model View Controller (MVC) 
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What are global variables? 
  Accessible to all functions in a module 

  Declared as global varname in functions 
• Mandatory for writing global variables 
• Good idea for reading global variables 

  Defined at 'top' of module for reading code 

  Why are global variables are bad idea? 
  Very difficult to reason about correct code 
  Very difficult to extend, modify code 
  Non-locality makes maintenance difficult   

 


