Compsci 6/101: Re[gex|cursion]

® Regular expressions and grammars
> Recognizing and validating text based on rules
> Generating text based on rules
> From programs to scholarly papers

® Recursion: self-referential structures and code
> Look up recursion in [Google | Bing]
> Look-it up in the index of ...
> What is a folder on your computer's desktop?

Compsci 06/101, Spring 2011 161

What's the deal with self-reference?

@ This sentence is false.
» This sentence is true.
» I think I'm thinking too much.

® Recursive functions

> Function doesn't call itself, each function is a
separate "thing", with its own state

> Must have a base case, no recursive calls made,
no self-referential work done

> Each recursive call gets closer to base case
* Using some metric that we can reason about

Compsci 06/101, Spring 2011 162

What's in a folder on your computer?

® Where are the large files? How do you find them?
> Can a folder be inside a folder? Why?

eo0o [leourses

(<) E=[m]=] (-] Q

il

Compsci 06/101, Spring 2011 163

Finding large files: FileVisit.py

def bigfiles(dirname,min_size):
large = []
#print dirname
for sub in os.listdir (dirname) :
path = os.path.join(dirname, sub)
if os.path.isdir(path):
large.extend (bigfiles (path,min_size))
else:
size = os.path.getsize(path)
if size > min_size:
large.append((path,size))
return large

bigs = bigfiles("c:\Users",10000)
[(file,102030), (nfile,1030303), (pfile,10001)]

Compsci 06/101, Spring 2011 164

Dissecting FileVisit.py

® How do we find the contents of a folder?
> Another name for folder: directory
> How do we identify folder? (by name)
» os.listdir(dirname) returns a list of ...
» Path is c:\user\ola\foo or /Users/ola/bar
> os.path.join(dir,sub) returns full path
> Platform independent paths

® What's the difference between file and folder?
> os.path.isdir () and os.path.getsize()

Compsci 06/101, Spring 2011 165

Creativity with self-reference

® Sometimes madlibs are fun (corollary?)
> Humans fill in the blanks
» Computers automatically fill in the blanks

The <apt-name> APT was really <description> but I
didn't do it because I <excuse>

<description> :: "cool", "terrible", "baller", ...
<excuse> :: "was too tired", "didn't know how", ...

<excuse> :: <excuse> and <excuse>
® See SimpleGrammar.py

Compsci 06/101, Spring 2011 166

Why look at recursion?

® Powerful tool for elegantly expressing algorithms

> Never necessary, but alternative can be hard to
develop, lengthy, tricky, ... (but then again ...)

> Part of essential toolkit of computer scientist

* Arguably not essential for web developer, entrepeneur,
social media promoter, ...

® Another way of thinking about problems

> In every day life? When writing code?
> When drawing? When creating symphonies?

Compsci 06/101, Spring 2011 16.7

Recursion in Pictures

@ http://xkcd.com/688/ and http://xkcd.com/543/

FRACTION OF AMOUNT OF LOCATION OF
THIS IMAGE BLACK INK. BLACK. INK. IN
WHICH IS WHITE BY PANEL THIS INAGE:

New sorting algorithms happen ...

@ timsort is standard on...
> Python as of version 2.3, Android, Java 7

> According to
http://en.wikipedia.org/wiki/Timsort

¢ Adaptive, stable, natural mergesort with supernatural
performance

® What is mergesort? Fast and Stable: see Merge.py
> What does this mean?
» Divide and Conquer, what does that mean?
> Nothing is faster, what does that mean?
> Quicksort is faster, what does that mean?

Compsci 06/101, Spring 2011 169

How tomerge/join two sorted lists?

. ['a','d','z'] and ['b','c','f','y']
> ['a','b','c','d','f‘,'y','z']
def merge (left, right):
result,i,j = [],0,0
while i < len(left) and j < len(right):
if left[i] <= right[j]:
result.append(left[i])

i+=1

else:
result.append(right[]j])
j+=1

result.extend (left[i:])
result.extend(right[j:])
return result

Compsci 06/101, Spring 2011 1610

How to sort a list?

def mergesort(list):

if len(list) < 2:
return list

else:
middle = len(list) / 2
left = mergesort(list[:middle])
right = mergesort(list[middle:])
return merge (left, right)

Compsci 06/101, Spring 2011 1611

Comparing Algorithms

® Searching a list of N elements for a specific value
> Worst case is

® Doing binary search (guess a number), sorted list
> Worst case is ...

® Sorting using merge sort
> Worst case is ...

® Naive finding which ball collides with specific ball
> Worst case is ...

Compsci 06/101, Spring 2011 1612

Bubble Sort, A Personal Odyssey

Compsci 06/101, Spring 2011
1613

[17:23:10 page o
nn = LUFFOUT;
3160 11/
1798 ens JUTEVS 08/; 7
3100
113
3820 SOKT: yrecenuu(uunl
830 U3 5arT sorts BUFFER inte slphabatical erdet
3840 fe lentiy uses hubble soct and an index arrar */
3850
3860 e RUR tixeds /% W entries */
0 fci (1,08 fixedd
Jheo el aHOLE fixedi /% ¥ holes in catalog ¥/
49
’3:0?1 AHOLE,D = 07 /% initialize for no hel
31
3920 ao & = 0 te NUR - & Dy 13
i 1 BUPFER(IL * 8) ¢ 93 = 0 /% than entry 19 2 hola
3991 tren HHOLE = AROLE ¥ LS *1.
3960 else do PR .
3970 uoum ag g A 7% mat up index aczay *
3980 Y]
3939 end?
3000
4019 [
4020 Q
4033 BENTK = WENTR = RAOLE) /% dont include the nob
4040 NUY = KUK = ®HOLLG 1% ne boles A/
059 -
4050 1= " /% tnitialize for end 0
407 o wuu 1> 8 o
4050 A=i-b % go backuards */
403y Jd =
4100 Ao uble g e 11
a / IR ST R R
4120 it um\sctaurruuwuunl\\hmhs(.lnur 2 hptciarein >
A3 S1NASC(BUFFERCINDEXS 341011 \AMLKASCL SUFFRRULADEX(I i) o1 3}
140 toen o3
4150 « = 1NDEX(J) 1 tenp seorage t
4160 THDEX(9) = numu . b T
4170 [HDEX () % 1) =
4186 end:
199

4
Compse: , 4200,

16.14

s

goo?-
G ..

(ol 'su(\:w(!aiwd)

S = 500 PROCEDURE GUICKSORTCLL 3 A
R 6 o LUE 1,05 INTEGER 12J.
oRITE T Gihtmesty e
iy ;89 INTEGER. oLni, 0L
p ORRMAKLEN NGIERERS, D-m lnm;
v A 22
LBV, LODY. REF e rmrswnm-ncnuux
ARRAY FREOL 11 FREGSIZE),LNGFAEQL 11 . o
TATEGER ARy LI LB OmOSIEE i

ASHSTOREC 11MASH
stzen

[LF STOREL J)<TEMPSTORE
THEN (BEGIN
STOREC1)t «5TOREC.23

Not needed -

Can be tightened
considerably

°(tr mmm 3>TEMPSTORE
TN

\ smnnu,.smzm

-1

1180 § ND
1190 eLsE Trste1s
1200 D

1210)

D
1220 [STORET1 1 =TEMS

Compsci 06/101, Spring 2011 e e
13108ND:—

16.15

Jim Gray (Turing 1998)

e Bubble sort is a good
argument for analyzing
algorithm performance. It
is a perfectly correct
algorithm. But it's
performance is among the
worst imaginable. So, it
crisply shows the
difference between correct
algorithms and good
algorithms.

(italics ola’s)

Compsci 06/101, Spring 2011

16.16

Brian Reid (Hopper Award 1982)

Feah. I love bubble
sort, and I grow weary
of people who have
nothing better to do
than to preach about it.
Universities are good
places to keep such
people, so that they
don't scare the general
public.

(continued)

Compsci 06/101, Spring 2011 1617

Brian Reid (Hopper 1982)

I am quite capable of squaring N with or without a calculator,
and I know how long my sorts will bubble. I can type every
form of bubble sort into a text editor from memory. If I am
writing some quick code and I need a sort quick, as opposed to
a quick sort, I just type in the bubble sort as if it were a
statement. I'm done with it before I could look up the data

type of the third argument to the quicksort library.

I have a dual-processor 1.2 GHz Powermac and it sneers at
your N squared for most interesting values of N. And my

source code is smaller than yours.

Brian Reid
who keeps all of his bubbles sorted anyhow.

Compsci 06/101, Spring 2011

16.18

Niklaus Wirth (Turing award 1984)

I have read your article and share
your view that Bubble Sort has
hardly any merits. I think that it
is so often mentioned, because it
illustrates quite well the
principle of sorting by
exchanging.

I think BS is popular, because it fits w
into a systematic development of soxt
algorithms. But it plays no role in acti
applications. Quite in contrast to {4%,‘
without merit (and its derivative
among programming codes.

Compsci 06/101, Spring 2011 1619

Owen O’ Malley

® Debugging can be frustrating, but
very rewarding when you find the
cause of the problem. One of the
nastiest bugs that I’ ve found when I
was at NASA and the Mars Explorer
Rovers had just landed on Mars.
http://sortbenchmark.org/
Hadoop sets Terabyte sort record
» Java
> 34252 nodes
> Greedy!

Compsci 06/101, Spring 2011

16.20

