
Compsci 06/101, Spring 2011 19.1

What is Computing? Informatics?
  What is computer science, what is its potential?

  What can we do with computers in our lives?
  What can we do with computing for society?
  Will networks transform thinking/knowing/doing?
  Society affecting and affected by computing?
  Changes in science: biology, physics, chemistry, …
  Changes in humanity: access, revolution (?), …

  Privileges and opportunities available if you know code
  Writing and reading code, understanding algorithms
  Majestic, magical, mathematical, mysterious, …

Compsci 06/101, Spring 2011 19.2

Theory and Practice
  http://xkcd.com/664/
  http://en.wikiquote.org/wiki/Yogi_Berra
  Einstein on simplicity:

http://en.wikiquote.org/wiki/Albert_Einstein
  Occam's Razor

  How do you write Jotto to run in a browser?

  Does Python programming help here?
  http://www.cs.duke.edu/courses/cps006/spring11/jotto/

  How can we make a database-backed website using Ajax for
online course evaluations?

Compsci 06/101, Spring 2011 19.3

What can be programmed?
  What class of problems can be solved?

  Hadoop, Intel i7, Mac, Windows7, Android,…
  Alan Turing contributions

• Halting problem, Church-Turing thesis

  What class of problems can be solved efficiently?
  Problems with no practical solution

• What does practical mean?

  We can’t find a practical solution
• Solving one solves them all
• Would you rather be rich or famous?

Compsci 06/101, Spring 2011 19.4

Schedule students, minimize conflicts
  Given student requests,

available teachers
  write a program that

schedules classes
  Minimize conflicts

  Add a GUI too
  Web interface
  …
  …

I can’t write
this program
because I’m too
dumb

Compsci 06/101, Spring 2011 19.5

One better scenario
I can’t write this
program because
it’s provably
impossible

I can’t write this
program but neither
can all these famous
people

Still another scenario, is this better?

Compsci 06/101, Spring 2011 19.6

Summary of Problem Categories
  Some problems can be solved 'efficiently'

  Run large versions fast on modern computers
  What is 'efficient'? It depends

  Some problems cannot be solved by computer.
  Provable! We can't wait for smarter algorithms

  Some problems have no efficient solution
  Provably exponential 2n so for "small" n …

  Some have no known efficient solution, but …
  If one does they all do!

Compsci 06/101, Spring 2011 19.7

Entscheidungsproblem
  What can we program?

  What kind of computer?

  What can't we program?
  Can’t we try harder?

  Can we write a program that will determine if any program

P will halt when run on input S?
  Input to halt: P and S
  Output: yes/no halts

Compsci 06/101, Spring 2011 19.8

Good sites: http://del.icio.us/
  What is social bookmarking?

  Why is del.icio.us interesting?
  Who posts, who visits?

  What about a website of interesting websites?
  What would you expect to find there?
  Would the site list itself?

  What about sites that list/link to themselves?
  What about a site with all sites that list

themselves?

Compsci 06/101, Spring 2011 19.9

Bad sites: http://haz.ardo.us
  Sites listing bad sites (don’t visit them?)

  Where would this be useful?
  What about censorship (internationally?)
  Is this a good site or a bad site?

  What about sites that list/link themselves?
  Is haz.ardo.us there?

  Website of all the sites that don’t list themselves?
  Is notlisted.com listed on notlisted.com?

Compsci 06/101, Spring 2011 19.10

halting module/problem: writing doesHalt
"""
 function doesHalt returns True if progname
 halts when run on input, and False if progname
 doesn't halt (infinite loop)
"""
 def doesHalt(progname,input):
 #code here

 name = "SpreadingNews.py"
 data = "input.txt"
 if doesHalt(name,data): print "program ended!"

  We're assuming doesHalt exists – how to use it?
  It works for any program and any data! Not just

one, that's important in this context

Compsci 06/101, Spring 2011 19.11

How to tell if X stops/halts on Y
import halting
def runHalt():
 prog = "SpreadingNews.py";
 input = "["abc", "def", "hij"]"
 if halting.doesHalt(prog,input):
 print prog,"stops"
 else:
 print prog,"loops 4ever"

  Can user enter name of program, X? Input, Y?
  What's the problem with this program?

Compsci 06/101, Spring 2011 19.12

Consider this module Confuse.py

import halting
print "enter name of program",
prog = raw_input()
if halting.doesHalt(prog,prog):
 while True:
 pass
print "finished"

  We want to show writing doesHalt is impossible
  Proof by contradiction:
  Assume possible, show impossible situation results

  Can a program read a program? Itself?

Compsci 06/101, Spring 2011 19.13

Are hard problems easy? Clay Prize
  P = easy problems, NP = “hard” problems

  P means solvable in polynomial time
• Difference between N, N2, N10 ?

  NP means non-deterministic, polynomial time
• guess a solution and verify it efficiently

  Question: P = NP ?
  if yes, a whole class of difficult problems , the
NP-complete problems, can be solved efficiently

  if no, no hard problems can be solved efficiently
  showing the first problem was NP complete was
an exercise in intellectual bootstrapping,
satisfiability/Cook/(1971)

Compsci 06/101, Spring 2011 19.14

Theory and Practice
  Number theory: pure

mathematics
  How many prime numbers

are there?
  How do we factor?
  How do we determine

primeness?

  Computer Science
  Primality is “easy”
  Factoring is “hard”
  Encryption is possible

top secret

public-key cryptography
randomized primality
testing

Compsci 06/101, Spring 2011 19.15

Wikileaks, PGP, PKI, verification
  http://cryptome.org/0001/wikileaks-keys/wikileaks-keys.htm

  Where are wikileaks servers and how to find them?
  What if they’re taken down
  Where is information
  What about imposters or verification?

  File x distributed
  Download
  Verify integrity and source!

Compsci 06/101, Spring 2011 19.16

How is Python like all other
programming languages, how is it
different?

Compsci 06/101, Spring 2011 19.17

A Rose by any other name…C or Java?
  Why do we use [Python|Java] in courses ?

  [is|is not] Object oriented
  Large collection of libraries
  Safe for advanced programming and beginners
  Harder to shoot ourselves in the foot

  Why don't we use C++ (or C)?
  Standard libraries weak or non-existant

(comparatively)
  Easy to make mistakes when beginning
  No GUIs, complicated compilation model
  What about other languages?

Compsci 06/101, Spring 2011 19.18

Why do we learn other languages?
  Perl, Python, PHP, Ruby, C, C++, Java, Scheme, ML,

  Can we do something different in one language?
•  In theory: no; in practice: yes

  What languages do you know? All of them.
  In what languages are you fluent? None of them

  In later courses why do we use C or C++?
  Closer to the machine, understand abstractions at

many levels
  Some problems are better suited to one language

Compsci 06/101, Spring 2011 19.19

Find all unique/different words in a file

Across different languages: do these
languages have the same power?

Compsci 06/101, Spring 2011 19.20

Guido van Rossum
  BDFL for Python development

  Benevolent Dictator For Life
  Late 80’s began development

  Python is multi-paradigm
  OO, Functional, Structured, …

  We're looking forward to a future where every computer user
will be able to "open the hood" of their computer and make
improvements to the applications inside. We believe that this
will eventually change the nature of software and software
development tools fundamentally.

Guido van Rossum, 1999!

Compsci 06/101, Spring 2011 19.21

Unique Words in Python
#! /usr/bin/env python

def main():
 f = open('/data/melville.txt', 'r')
 words = f.read().strip().split()
 allWords = set()
 for w in words:
 allWords.add(w)
 for word in sorted(allWords):
 print word

if __name__ == "__main__":
 main()

Compsci 06/101, Spring 2011 19.22

Unique words in Java
import java.util.*;
import java.io.*;
public class Unique {
 public static void main(String[] args)
 throws IOException{
 Scanner scan =
 new Scanner(new File("/data/melville.txt"));
 TreeSet<String> set = new TreeSet<String>();
 while (scan.hasNext()){
 String str = scan.next();
 set.add(str);
 }
 for(String s : set){
 System.out.println(s);
 }
 }
}

Compsci 06/101, Spring 2011 19.23

Unique words in C++
#include <iostream>
#include <fstream>
#include <set>
using namespace std;

int main(){
 ifstream input("/data/melville.txt");
 set<string> unique;
 string word;
 while (input >> word){
 unique.insert(word);
 }
 set<string>::iterator it = unique.begin();
 for(; it != unique.end(); it++){
 cout << *it << endl;
 }
 return 0;
}

Compsci 06/101, Spring 2011 19.24

PHP, Rasmus Lerdorf and Others
  Rasmus Lerdorf

  Qeqertarsuaq, Greenland
  1995 started PHP, now part of it
  http://en.wikipedia.org/wiki/PHP

  Personal Home Page
  No longer an acronym

  “When the world becomes standard, I will
start caring about standards.”

Rasmus Lerdorf

Compsci 06/101, Spring 2011 19.25

Unique words in PHP
<?php

$wholething = file_get_contents("file:///data/melville.txt");
$wholething = trim($wholething);

$array = preg_split("/\s+/",$wholething);
$uni = array_unique($array);
sort($uni);
foreach ($uni as $word){
 echo $word."
";
}

?>

Compsci 06/101, Spring 2011 19.26

Kernighan and Ritchie
  First C book, 1978
  First ‘hello world’
  Ritchie: Unix too!

  Turing award 1983

  Kernighan: tools
  Strunk and White

  Everyone knows that debugging is twice as hard as
writing a program in the first place. So if you are as
clever as you can be when you write it, how will you
ever debug it?

Brian Kernighan

Compsci 06/101, Spring 2011 19.27

How do we read a file in C?
#include <stdio.h>
#include <string.h>
#include <stdlib.h>

int strcompare(const void * a, const void * b){
 char ** stra = (char **) a;
 char ** strb = (char **) b;
 return strcmp(*stra, *strb);
}

int main(){
 FILE * file = fopen("/data/melville.txt","r");
 char buf[1024];
 char ** words = (char **) malloc(5000*sizeof(char **));
 int count = 0;
 int k;

Compsci 06/101, Spring 2011 19.28

Storing words read when reading in C
 while (fscanf(file,"%s",buf) != EOF){
 int found = 0; // look for word just read
 for(k=0; k < count; k++){
 if (strcmp(buf,words[k]) == 0){
 found = 1;
 break;
 }
 }
 if (!found){ // not found, add to list
 words[count] = (char *) malloc(strlen(buf)+1);
 strcpy(words[count],buf);
 count++;
 }
 }

  Complexity of reading/storing? Allocation of memory?

Compsci 06/101, Spring 2011 19.29

Sorting, Printing, Freeing in C
 qsort(words,count,sizeof(char *), strcompare);
 for(k=0; k < count; k++) {
 printf("%s\n",words[k]);
 }

 for(k=0; k < count; k++){
 free(words[k]);
 }
 free(words);

}
  Sorting, printing, and freeing

  How to sort? Changing sorting mechanism?
  Why do we call free? Where required?

Compsci 06/101, Spring 2011 19.30

def is_this_the_end_of_learning_of():
 [x for x in …]

Compsci 06/101, Spring 2011 19.31

Maria Cimino

  Math/Italian (min)

Compsci 06/101, Spring 2011 19.32

Tamara Louie

  BME

Compsci 06/101, Spring 2011 19.33

  Program II

Alexandra Levitt

Compsci 06/101, Spring 2011 19.34

Qasim Khan

  Economics

Compsci 06/101, Spring 2011 19.35

Herng Lee

  Economics

Compsci 06/101, Spring 2011 19.36

Bryan Gomez-Wong

  Political Science/
Economics(min)/
MMS

Compsci 06/101, Spring 2011 19.37

Amy Oh

  Statistics/
Asian&Mideast
Studies (min)

Compsci 06/101, Spring 2011 19.38

Gordon Motsinger

  Psychology/
Asian&Mideast
Studies (min)/
Religion

Compsci 06/101, Spring 2011 19.39

  Biology/
Psychology(min)

Cory Nanni

