
Compsci 06/101, Spring 2011 6.1

Compsci 6/101: PFTW
  What is Python? What is a programming language?

  How are programs executed? What does that mean?
  Why do you need to have an understanding of this?
  What are functions, modules, return values, function calls

  What’s an APT and how do you solve them?
  Why are you writing a function?
  Who calls the function you write?

  What is a list and what is a list comprehension?
  How to create, modify, and use lists
  Why lists will change your life … for the better!

Compsci 06/101, Spring 2011 6.2

Python (C, Javascript, Java, PHP, …)
  High level programming languages

  Translate to lower-level languages: assembly, bytecode
  Executed by a virtual machine or by a chip/real machine
  Compile the high level language into lower level
  Python compiler/interpreter written in C or Java (or …)

•  Compilers for platforms: Mac, Windows, Linux, …

  Abstractions: foundation of languages
  Make it easier to think about problems and avoid details
  Hide details, which can sometimes have issues
  What is a loop, a list, an int, a String a function …

Compsci 06/101, Spring 2011 6.3

From high- to low-level Python

def reverse(s):
 r = ""
 for ch in s:
 r = ch + r
 return r

  Create version on
the right using
dissassembler
dis.dis(code.py)

7 0 LOAD_CONST 1 ('')
 3 STORE_FAST 1 (r)

8 6 SETUP_LOOP 24 (to 33)
 9 LOAD_FAST 0 (s)
 12 GET_ITER
 >> 13 FOR_ITER 16 (to 32)
 16 STORE_FAST 2 (ch)

9 19 LOAD_FAST 2 (ch)
 22 LOAD_FAST 1 (r)
 25 BINARY_ADD
 26 STORE_FAST 1 (r)
 29 JUMP_ABSOLUTE 13
 >> 32 POP_BLOCK

10 >> 33 LOAD_FAST 1 (r)
 36 RETURN_VALUE

Compsci 06/101, Spring 2011 6.4

High level, low level, abstractions
  Python byte-code is executed by…

  Platform specific virtual machine/environment
  Similar to Java

  Javascript code is executed by …
  Platform specific browser (Firefox, IE, Chrome, Opera, …)
  Is HTML executed?

  C++ code is executed by …
  The CPU and the operating system, from compiled code
  Compiler is platform specific

  Microsoft word is executed by …
  Platform specific OS, CPU, from compiled executable

Compsci 06/101, Spring 2011 6.5

Reading and understanding Python
  When a program executes where does it start?

  When you click the ‘run’ button, what happens?
  What does it mean to ‘execute sequentially’?
  What happens when one function calls another (e.g.,

FileFilter.py or OldWoman.py)

  Simple illustration:
  http://www.kongregate.com/games/Coolio_Niato/light-bot

Compsci 06/101, Spring 2011 6.6

Lynn Conway
See Wikipedia and lynnconway.com
  Joined Xerox Parc in 1973
  Revolutionized VLSI design with

Carver Mead

  Joined U. Michigan 1985
  Professor and Dean, retired '98

  NAE '89, IEEE Pioneer '09

  Helped invent dynamic
scheduling early '60s IBM

  Transgender, fired in '68

Compsci 06/101, Spring 2011 6.7

Debugging APTs: Going green
  TxMsg APT: from ideas to code to green

  What are the main parts of solving this problem?
  Transform words in original string

•  Abstract that away at first

  Finding words in original string
•  How do we do this?

def getMessage(original):
 ret = ""
 for word in original.split():
 ret = ret + " " + transform(word)
 return ret #initial space?

Compsci 06/101, Spring 2011 6.8

Debugging APTs: Going green
  CirclesCountry APT: from ideas to code to green

  How do we solve the problem? May not be apparent
  How do we loop over circles? What is a circle?

•  When is a piont inside a circle?

x = leastBorder([-3,2,2,0,-4,12,12,12],
[-1,2,3,1,5,1,1,1],[1,3,1,7,1,1,2,3],2,3,13,2)

Compsci 06/101, Spring 2011 6.9

Set, Logic Operations from pictures
  http://en.wikipedia.org/wiki/File:Venn0111.svg

Compsci 06/101, Spring 2011 6.10

Revisiting cgratio APT
  How do you count 'c' and 'g' content of a string?

  Toward a transformative approach v. modification/mutate

def cgcount(strand):
 cg = 0
 for nuc in strand:
 if nuc == 'c' or nuc == 'g':
 cg += 1
 return cg

def cgcount2(strand):
 cg = [1 for ch in strand if ch == 'c' or ch == 'g']
 return sum(cg)

Compsci 06/101, Spring 2011 6.11

List Comprehensions
  Creating a list from another list, two decisions:

  Is new list the same size as original, or smaller?
  Are elements the same or related by some correspondence?

words = ["bear", "lion", "zebra", "python"]
w2 = [w for w in words if some_property(w)]
w3 = [f(w) for w in words]
w4 = [1 for w in words if some_property(w)]

  Once we have list can apply list functions

  We have: len, sum, max, min
  Can "invent" others by writing functions

Compsci 06/101, Spring 2011 6.12

List Comprehensions Again
  Transformative approach can scale differently

  Functional programming: code generates and doesn't modify
  Basis for (ultra) large scale mapreduce/Google coding

w = [expr for elt in list if bool-expr]
w = [f(w) for w in list if bool_expr(w)]

  Why are abstractions important?

  Reason independently of concrete examples
  Generalize from concrete examples
  http://wapo.st/e5ZtkB

