
Compsci 06/101, Spring 2011 7.1

Compsci 6/101: I Python
  Techniques for looping

  Loop over sequences by sequence value
  Loop by indexing, or by index and value: enumerate
  While loop: as long as condition holds, e.g., game not over

  Techniques for transforming data
  One domain leads to solutions, other much harder
  Identify music with sound-hound/shazaam
  Encryption: transform data to hide it, but …
  APT AnagramFree

Compsci 06/101, Spring 2011 7.2

Loop over sequence with index
  Index useful in accessing elements in order

  Sometimes need adjacent elements, i-1, i, and i+1
  Often need both index and element, see enumerate below

for i,fr in enumerate(['a','b','c']):
 print i,fr

  No more powerful than looping over range, why?
  Idiomatic programming, helps to know vocabulary

•  Syntactic sugar

  Not necessary, use for i in range(0,len(seq)):

Compsci 06/101, Spring 2011 7.3

Indefinite loop: while … interactivity
wrong = 0
while wrong < max_wrong:
 guess = raw_input()
 if not good_guess(guess):
 wrong += 1
 else:
 #process the guess here
  Suppose, for example, play http://www.hangman.no

  What happens if you loop while True:
  Break out of loop with break
  See code in GuessNumber.py

Compsci 06/101, Spring 2011 7.4

From guessing numbers to transforms
  With good-guessing, optimal number of guesses?

  How do you reason about this?
  Don't think of the number, but range of possibilities

  How will Watson do in Jeopardy tonight?
  http://to.pbs.org/fRQz6p
  How does Watson transform questions so understandable?

  Sometimes changing data leads to solution
  Transformations depend on problem and solution space
  If the answer is 'yes', if the answer is 'Waterloo', …

Compsci 06/101, Spring 2011 7.5

Richard Stallman (b.1953, Hopper '90)
  Transformed programming

  Free Software Foundation

  "World's Best Programmer"
  Gnu/Linux: g++, emacs

  Believes all software should
be free, but like “free speech”,
not “free beer”

  Won MacArthur award for his

efforts and contributions

  League for Programming Freedom
•  It's about free, not open

Compsci 06/101, Spring 2011 7.6

Aside: Transform for AnagramFree APT
  How do you know when two words are anagrams?

  Possible to tell with letter-count fingerprint
  "apple" -> [1,0,0,0,1,0,0,0,0,0,0,1,0,0,0,2,0,0,0,0,0,0,0,0,0,0]
  Can we create this fingerprint? How?
  Alternative fingerprint: sort the letters

sorted("apple") is … why?
''.join(['a','b','c']) is "abc"

  If the data is transformed, still some work to do
  #Anagrams in ['dgo', 'aet', 'dgo', 'aet', 'aet']?

Compsci 06/101, Spring 2011 7.7

Simulation and Randomness
  Randomness is essential for games

  Same game every time, not so exciting
  Where does randomness come in?
  How does "random" happen?

  Randomness essential for modeling/simulation
  To verify simulation, likely sensitive to probabilities
  So-called stochastic simulations/models
  We'll start with simple examples to investigate

•  Reinforce concepts in lab this week

Compsci 06/101, Spring 2011 7.8

Some details of module random
  Want randomness, but want to debug randomness

  Set seed for debugging, use time or other seed
  What's done in Las Vegas slot machines?

  See DiceRolling.py and HeadsTails.py
  Illustrates coding styles and randomness
  How do we count runs of heads/tails?
  How do we verify "good" random numbers?

•  Eyeball or run appropriate statistical tests

  Toward game playing
  Choosing words/items from list at random

Compsci 06/101, Spring 2011 7.9

Random and Pseudo-Random
  Truly random happens in nature/in the 'wild'

  random.org
  Time-gaps between keystrokes, e.g., used in PGP

  PRNG: pseudo-random number generator
  Uses mathematical and/or algorithmic approaches
  Good ones are good, bad ones are predictable

  We'll use Python's random library
  Likely good enough, for 'real science', verify

Compsci 06/101, Spring 2011 7.10

31 U.S.C. § 5361–5367
  US Code section 5361 aka UIGEA

  Unlawful Internet Gambling Enforcement Act
  Passed in 2006, took effect June 1, 2010
  What is legal, what is illegal, what are effects?

Compsci 06/101, Spring 2011 7.11

Statistical Analysis of Poker Hand
  How do we represent cards? Deck? Suit? Rank?

  What is a card?
  What can you do with a card?
  How will we represent a hand?
  Keep things simple: lists help!

  How do we 'create' a deck
  Number of cards?
  Code for creating cards?
  Loop over suits/ranks
  Debugging assistance!

Compsci 06/101, Spring 2011 7.12

Coping with cards: Cardtester.py
  Dealing a deck of cards in Python: Cardtester.py

  In code below, what is a deck?
  What is a card?

 What's easier to understand: [0,1] or "ace of hearts"

  How do nested loops work?
  Why do we use strings? Lists? Tuples?

def getDeck():
 d = []
 for rank in range(0,13):
 for suit in range(0,4):
 d.append([rank,suit])
 return d

