
Compsci 06/101, Spring 2011 8.1

Compsci 6/101: PFTW, Feb 28-March 4
  Algorithms and Data Structures

  Sets and how they are used in Python (data structure)
  Algorithms, solving problems, understanding trade-offs

  Transforms and modules
  Transforming data and then untransforming it
  How do you send a .jpg via … email, text, copy/paste
  How do you write programs in more than one .py file?

  Writing code and understanding "costs"
  Cost of calling a function? It depends!

Compsci 06/101, Spring 2011 8.2

Algorithm
  What, where, when, who, why?

  http://en.wikipedia.org/wiki/Algorithm
  From Euclid to Google?

  Instructions, rules, list
  task, function, …
  effective, finite, mechanizable?

  Choose the best website for 'teaching python'
  How does this work?

  How to search a list of strings…

Compsci 06/101, Spring 2011 8.3

Programming Equations
  Algorithms + Data Structures = Programs

  Niklaus Wirth, old view of programming and compsci
  Different view: functional, object-oriented, extreme/agile

  How old are algorithms?
  Euclid: find greatest common divisor, GCD (56, 217)
  Who cares? You do!

  A few basic idioms and algorithms go a long way
  log one-million much less than one-million (binary search)
  Don't do the same thing more than once

Compsci 06/101, Spring 2011 8.4

Tim Peters: Zen of Python
  Beautiful is better than ugly.
  Explicit is better than implicit.
  Simple is better than complex.
  Complex is better than complicated.
  Flat is better than nested.
  Readability counts.
  Special cases aren't special enough to break the

rules.
  In the face of ambiguity, refuse the temptation to

guess.
http://www.python.org/dev/peps/pep-0020/

Compsci 06/101, Spring 2011 8.5

Designing Algorithms and Programs
  Designing algorithms to be correct and efficient

  The most important of these is _______________
  When do we need to worry about efficiency?
  Example: finding a number between 1 and 1000

•  High, Low, Correct: how many guesses?
•  Same algorithm can find an element in a sorted list

  Python searching in dictionary, set, list
  How can we find an element?
  How long does it take?
  if x in collection:

Compsci 06/101, Spring 2011 8.6

Comparing Algorithms
  Searching a list of N elements for a specific value

  Worst case is ….

  Doing binary search (guess a number), sorted list
  Worst case is …

  Finding the most frequently occurring element:
  Strings? ints? does it matter? (toward Python dictionary)

  Where do proteins occur in a genome?
  Leveraging a previously solved APT

Compsci 06/101, Spring 2011 8.7

Revisiting cgratio APT
  'cost' of finding likely sources of protein in DNA
def cgratio(strand):
 cg = 0
 for nuc in strand:
 if nuc == 'c' or nuc == 'g':
 cg += 1
 return cg

def maxIndex(strand,windowSize):
 index,max = 0,0
 for i in range(0,len(strand)-windowSize+1):
 cg = cgratio(strand[i:i+windowSize])
 if cg > max:
 max,index = cg,i
 return index

Compsci 06/101, Spring 2011 8.8

Revisiting cgratio APT
  'cost' of finding likely sources of protein in DNA
def runningMax(strand,windowSize):
 gc,counters = 0,[]
 for nuc in strand:
 counters.append(gc)
 if nuc == 'c' or nuc == 'g':
 gc += 1
 counters.append(gc)

 index,max = 0,0
 for i in range(windowSize,len(strand)+1):
 diff = counters[i] - counters[i-windowSize]
 if diff > max:
 max,index = diff,i
 return index-windowSize

