Compsci 6/101: PFTW, Feb 28-March 4

® Algorithms and Data Structures
> Sets and how they are used in Python (data structure)
» Algorithms, solving problems, understanding trade-offs

® Transforms and modules
» Transforming data and then untransforming it
» How do you send a .jpg via ... email, text, copy/paste
» How do you write programs in more than one .py file?

® Writing code and understanding "costs"
» Cost of calling a function? It depends!

Compsci 06/101, Spring 2011 81

Algorithm

® What, where, when, who, why?
> //fen.wikipedia.org/wiki/Algorithm

» From Euclid to Google?

o-®

@ Instructions, rules, list gk ‘w
> task, function, ... g e °
» effective, finite, mechanizable?

Pagefank © °

® Choose the best website for 'teaching python'
» How does this work?

® How to search a list of strings...

Compsci 06/101, Spring 2011 82

Programming Equations

® Algorithms + Data Structures = Programs
» Niklaus Wirth, old view of programming and compsci
» Different view: functional, object-oriented, extreme/agile

® How old are algorithms?
> Euclid: find greatest common divisor, GCD (56, 217)
» Who cares? You do!

® A few basic idioms and algorithms go a long way
> log one-million much less than one-million (binary search)

» Don't do the same thing more than once

Compsci 06/101, Spring 2011 83

Tim Peters: Zen of Python

Beautiful is better than ugly.
Explicit is better than implicit.

Simple is better than complex.

Flat is better than nested.
Readability counts.

Special cases aren't special enough to break the
rules.

[]
[]
[]
® Complex is better than complicated.
[]
°
[]

@ In the face of ambiguity, refuse the temptation to
guess.
http://www.python.org/dev/peps/pep-0020/

Compsci 06/101, Spring 2011 84

Designing Algorithms and Programs

® Designing algorithms to be correct and efficient
» The most important of these is
> When do we need to worry about efficiency?
» Example: finding a number between 1 and 1000
* High, Low, Correct: how many guesses?
* Same algorithm can find an element in a sorted list

® Python searching in dictionary, set, list
> How can we find an element?
» How long does it take?
» if x in collection:

Compsci 06/101, Spring 2011

85

Comparing Algorithms

® Searching a list of N elements for a specific value
> Worst case is

® Doing binary search (guess a number), sorted list
» Worst case is ...

o Finding the most frequently occurring element:
» Strings? ints? does it matter? (toward Python dictionary)

® Where do proteins occur in a genome?
» Leveraging a previously solved APT

Compsci 06/101, Spring 2011 86

Revisiting cgratio APT

® 'cost' of finding likely sources of protein in DNA
def cgratio(strand):

cg =0
for nuc in strand:
if nuc == 'c¢' or nuc == 'g':

cg += 1
return cg

def maxIndex(strand,windowSize):
index,max = 0,0
for i in range(0,len(strand)-windowSize+l):
cg = cgratio(strand[i:i+windowSize])
if cg > max:
max,index = cg,i
return index

Compsci 06/101, Spring 2011

Revisiting cgratio APT

o 'cost' of finding likely sources of protein in DNA
def runningMax(strand,windowSize):
gc,counters = 0, []
for nuc in strand:
counters.append (gc)
if nuc == 'c¢' or nuc == 'g':
gc +=1
counters. append (gc)

index,max = 0,0
for i in range (windowSize,len(strand)+1):
diff = counters[i] - counters[i-windowSize]
if diff > max:
max,index = diff,i
return index-windowSize

Compsci 06/101, Spring 2011 88

