
Compsci 06/101, Spring 2011 8.1

Compsci 6/101: PFTW, Feb 28-March 4
  Algorithms and Data Structures

  Sets and how they are used in Python (data structure)
  Algorithms, solving problems, understanding trade-offs

  Transforms and modules
  Transforming data and then untransforming it
  How do you send a .jpg via … email, text, copy/paste
  How do you write programs in more than one .py file?

  Writing code and understanding "costs"
  Cost of calling a function? It depends!

Compsci 06/101, Spring 2011 8.2

Algorithm
  What, where, when, who, why?

  http://en.wikipedia.org/wiki/Algorithm
  From Euclid to Google?

  Instructions, rules, list
  task, function, …
  effective, finite, mechanizable?

  Choose the best website for 'teaching python'
  How does this work?

  How to search a list of strings…

Compsci 06/101, Spring 2011 8.3

Programming Equations
  Algorithms + Data Structures = Programs

  Niklaus Wirth, old view of programming and compsci
  Different view: functional, object-oriented, extreme/agile

  How old are algorithms?
  Euclid: find greatest common divisor, GCD (56, 217)
  Who cares? You do!

  A few basic idioms and algorithms go a long way
  log one-million much less than one-million (binary search)
  Don't do the same thing more than once

Compsci 06/101, Spring 2011 8.4

Tim Peters: Zen of Python
  Beautiful is better than ugly.
  Explicit is better than implicit.
  Simple is better than complex.
  Complex is better than complicated.
  Flat is better than nested.
  Readability counts.
  Special cases aren't special enough to break the

rules.
  In the face of ambiguity, refuse the temptation to

guess.
http://www.python.org/dev/peps/pep-0020/

Compsci 06/101, Spring 2011 8.5

Designing Algorithms and Programs
  Designing algorithms to be correct and efficient

  The most important of these is _______________
  When do we need to worry about efficiency?
  Example: finding a number between 1 and 1000

•  High, Low, Correct: how many guesses?
•  Same algorithm can find an element in a sorted list

  Python searching in dictionary, set, list
  How can we find an element?
  How long does it take?
  if x in collection:

Compsci 06/101, Spring 2011 8.6

Comparing Algorithms
  Searching a list of N elements for a specific value

  Worst case is ….

  Doing binary search (guess a number), sorted list
  Worst case is …

  Finding the most frequently occurring element:
  Strings? ints? does it matter? (toward Python dictionary)

  Where do proteins occur in a genome?
  Leveraging a previously solved APT

Compsci 06/101, Spring 2011 8.7

Revisiting cgratio APT
  'cost' of finding likely sources of protein in DNA
def cgratio(strand):
 cg = 0
 for nuc in strand:
 if nuc == 'c' or nuc == 'g':
 cg += 1
 return cg

def maxIndex(strand,windowSize):
 index,max = 0,0
 for i in range(0,len(strand)-windowSize+1):
 cg = cgratio(strand[i:i+windowSize])
 if cg > max:
 max,index = cg,i
 return index

Compsci 06/101, Spring 2011 8.8

Revisiting cgratio APT
  'cost' of finding likely sources of protein in DNA
def runningMax(strand,windowSize):
 gc,counters = 0,[]
 for nuc in strand:
 counters.append(gc)
 if nuc == 'c' or nuc == 'g':
 gc += 1
 counters.append(gc)

 index,max = 0,0
 for i in range(windowSize,len(strand)+1):
 diff = counters[i] - counters[i-windowSize]
 if diff > max:
 max,index = diff,i
 return index-windowSize

