
CompSci 100e Program Design and Analysis II

February 8, 2011

Prof. Rodger

Announcements

- What is due?
 - Assignment Prestidigitation due today!
 - Apt due Feb 15
 - Markov out today Assignment due Feb 17
 - Lab this week also on Markov
 - Exam Feb 22
- Always turn in APTs if you have any green! You can get partial credit.
- Each APT is 10 points. You can do extra APTs to make up the missing points.

Classwork 5

- Redo ClassScores with a Map
- BTW, We are reworking some of the APTs and now to run APT you cannot have in your class import java.io.*
 - That means that your Classwork 2 with classscores no longer works on the APT. You have to remove the import and the methods that use it to get it to run

Analysis – Data Structures and Algorithms

- How do we compare two programs?
- Which one will run faster? Can we tell before coding?

- Two ways:
 - Run them and see which is faster add timings
 - Use mathematics to analyze the algorithm

Quantitative Measurements of Code

- Typically measure running time (memory?)
 - Other things to measure?
- Typically change size of input/problem to validate runtime hypotheses
 - Not the data itself, but the number of data items
 - Size of string vs. number of strings in array?
- Doubling hypothesis: What effect does doubling input size have on running time?
 - Linear: time doubles, quadratic: factor of four, ...

Different measures of complexity

- Worst case
 - Gives a good upper-bound on behavior
 - Never get worse than this
 - Drawbacks?
- Average case
 - What does average mean?
 - Averaged over all inputs? Assuming uniformly distributed random data?
 - Drawbacks?
- Best case
 - Linear search, useful?

Notations for measuring complexity

 O-notation or big-Oh: what does n look like as n approaches infinity?

```
    O(n) linear,
    O(n²) quadratic
    O(n³) cubic
    O(log n) logarithmic
    O(2<sup>n</sup>) exponential
```

 Sedgewick/Wayne uses tilde notation ~ n² means leading term is n squared

Example

```
for (int k=0; k<n; k++) {
    for (int j=0; j<n; j++) {
        count ++;
    }
}</pre>
```

What is O() worst case?

Example

```
for (int k=1; k<n; k = k * 2) {
    for (int j=0; j<m; j++) {
        count ++;
    }
}</pre>
```

What is O() worst case?

Example

```
for (int k=0; k<n; k++) {
    for (int j=k; j<n; j++) {
        count ++;
    }
}</pre>
```

What is O() worst case?

Big-Oh, O-notation: concepts & caveats

- Count how many times "simple" statements execute
 - In the body of a loop, what matters? (e.g., another loop?)
 - Assume simple statements take a second, cost a penny,...
- In real life: cache behavior, memory behavior, swapping behavior, library gotchas, things we don't understand,...

Simplify

$$O(4n^3 + 100 n + 35) =$$

$$O(3n^2 + 4n + 6) =$$

Worst case

- Given an array of integers in sorted order
- What is the worst case big-Oh time for:
 - Insert(x) insert x in the array (must maintain the sorted property.
 - Delete(x) remove x from the array
 - Contains(x) is x in the array, T or F
 - Min(x) return the minimum value in the array (don't delete it)

Multiplying and adding big-Oh

- Suppose we do a linear search then do another one
 - What is the complexity?
 - If we do 100 linear searches?
 - If we do n searches on a vector of size n?
- Binary search followed by linear search?
 - What are big-Oh complexities? Sum?
 - What about 50 binary searches? What about n searches?
- What is the number of elements in the list (1,2,2,3,3,3); (1,2,2,3,3,3,4,4,4,4)?
 - What about (1,2,2, ..., n,n,...,n)?

Helpful formulae

- We always mean base 2 unless otherwise stated
 - What is log(1024)?
 - $-\log(xy) \log(x^y) \log(2^n) 2^{(\log n)}$

Sums (also, use sigma notation when possible)

$$-1 + 2 + 4 + 8 + ... + 2^{k} =$$

$$-1 + 2 + 3 + ... + n =$$

$$-a + ar + ar^{2} + ... + ar^{n-1} = a(r^{n} - 1)/(r-1) = \sum_{i=1}^{n-1} ar^{i}$$

i=0

Helpful formulae

- We always mean base 2 unless otherwise stated
 - What is log(1024)?

$$-\log(xy) \log(x^y) \log(2^n) 2^{(\log n)}$$

$$\bullet \log(x) + \log(y)$$

$$\bullet y \log(x)$$

2(log n) = n
 Sums (also, use sigma notation when possible)

Sums (also, use sigma notation when possible)
$$-1 + 2 + 4 + 8 + ... + 2^{k} = \sum_{\substack{2^{k+1} - 1 = \\ -1 + 2 + 3 + ... + n = \\ n(n+1)/2 = \sum_{\substack{i=0 \\ i=1}}^{n} i$$

$$- a + ar + ar^2 + ... + ar^{n-1} = a(r^n - 1)/(r-1) = \sum_{i=0}^{n} ar^i$$

n-1

Hashing

- Storage hash table or hash buckets (implementation could be array, map, tree, or other structure)
- Each data item has a key
- Hash function that maps key to address in the hash table H(key) = address
- Best if the "key" is near the address
- "collision" if two items map to the same address

Example Hashing

 Duke's ACM Chapter wants to be able to quickly find out info about its members. Also add, delete and update members. Doesn't need members sorted.

```
267-89-5432 John Smith703-25-6142 Jack Adams319-86-2100 Betty Harris
```

476-82-5142 Rose Black

- Possible Hash Function: H(ssn) = last 3 digits
- Hash Table size is 1000, range from 0 to 999
- Will there be a collision with data above?

Bucket Hashing Buckets 0-999 (not all buckets shown)

- Buckets hold a lot of values
- Apply hash function to data. What happens?
- 100

H(267-89-5432) = 432

John Smith

H(703-25-6142) = 142

Jack Adams

H(319-86-2100)= 100

Betty Harris

H(476-82-5142) = 142

Rose Black

- 142
- 143
- 432
- 742
- 999

Buckets 0-999 (not all buckets shown)

 Apply hash function to data. What happens? 0

H(267-89-5432) = 432

John Smith

H(703-25-6142) = 142

Jack Adams

H(319-86-2100)= 100

Betty Harris

H(476-82-5142) = 142

Rose Black

142

100

143

432

John Smith

742

999

Buckets 0-999 (not all buckets shown)

 Apply hash function to data. What happens? 0

H(267-89-5432) = 432

John Smith

H(703-25-6142) = 142

Jack Adams

H(319-86-2100)= 100

Betty Harris

H(476-82-5142) = 142

Rose Black

100 Betty Harris

142

Jack Adams

143

432

John Smith

742

Where does Rose Black go?

999

Buckets 0-999 (not all buckets shown)

Apply hash function to data.
 What happens?

0

H(267-89-5432) = 432

John Smith

H(703-25-6142) = 142

Jack Adams

H(319-86-2100)= 100

Betty Harris

H(476-82-5142) = 142

Rose Black

142

100

Jack Adams Rose Black

Betty Harris

143

432

John Smith

742

 If buckets are one array, where does Rose Black go?

999

If instead of Buckets, one String array 0-999, Where would Rose Black go?

 Collision, must be resolved, one way next possible bucket (slot) 	0	
 Other Collision resolution methods 	100	Betty Harris
H(267-89-5432) = 432		
John Smith	142	Jack Adams
H(703-25-6142) = 142 Jack Adams	143	Rose Black
H(319-86-2100)= 100		
Betty Harris	432	John Smith
H(476-82-5142) = 142		
Rose Black	742	
	999	

Hash Functions

- Want hash function with the fewest collisions, data distributed
- Random number Generator with seed
 - H(key) is random(key)*N
- Shift folding with 100 buckets
 - H(123-45-6789) is (123 + 45+ 6789) mod 100
- Use ascii code
 - H(BANKS) = 66 + 65 + 78 + 75 + 83 = 367
 - Where ascii(B) = 66, etc.
- Java hashCode()