CompSci 100e
Program Design and Analysis I

February 10, 2011

Prof. Rodger

CompSci 100e, Spring2011



Announcements

e What is due/coming up?
— Apt due Feb 15

— Markov Assignment due Feb 17
e Will look at parts of it in lab

— Test on Feb 22
* Finish slides from last time



Simple Inheritance

Allows you to reuse code
Start with a Class (superclass)
Create another class that extends the class (subclass)

The subclass can use the methods from the
superclass or override them (use the same name, but
the code is different)

If the subclass redefines a superclass method, can
still call the superclass method with the word
“super” added.



Access to Instance Variables(state)
e public

— Any class can access
e private

— subclasses cannot access
e protected

— subclasses can access
— other classes cannot access



Example

Student (superclass)
DukeStudent (extends Student)
CosmicStudent (extends DukeStudent)

Look at code, what is the output?



More on Inheritance -Abstract Class

Abstract class — class that is declared abstract

Cannot be instantiated — cannot create an object for
this class

Another class must extend this class
May have some methods declared abstract

— Abstract methods have no bodies

— Those methods have to be implemented in the class that
extends the abstract class

Example:

— AbstractModel.java is an abstract class
— MarkovModel extends AbstractModel



More on Inheritance - Interface

e Class that is declared as an interface
* A group of related methods with empty bodies

 To implement the interface, your class would
implement the methods for those named in the
interface.

e Example

public iInterface IModel {
public void initialize(Scanner s);
public void process(Object 0);

}

— AbstractModel Implements IModel



What can an Object do (to itself)?

e http://www.cs.duke.edu/csed/java/jdk1.6/api/index.html
— Look at java.lang.Object

— What is this class? What is its purpose?

e toString()
— Used to print (System.out.println)an object
— overriding toString() useful in new classes
— String concatenation: String s = "'value "'+
X35
— Default is basically a pointer-value



What else can you do to an Object?

« equals(Object o)
— Determines if guts of two objects are the same, must
override, e.g., for using a. INdexOF(0) in ArrayList a

— Default is ==, pointer equality

 hashCode()

— Hashes object (guts) to value for efficient lookup

e |f you're implementing a new class, to play nice with
others you must
— Override equals and hashCode
— Ensure that equal objects return same hashCode value



Objects and values

* Primitive variables are boxes
— think memory location with value

* Object variables are labels that are put on boxes

String s = new String(''genome™);

String t = new String(''genome™);

IT (s == t) {they label the same box}

IT (s.equals(t)) {contents of boxes the same}

What's in the boxes? "genome" is in the boxes



Objects, values, classes

e For primitive types: int, char, double, boolean

— Variables have names and are themselves boxes
(metaphorically)

— Two int variables assigned 17 are equal with ==

 For object types: String, ArrayList, others
— Variables have names and are labels for boxes
— If no box assigned, created, then label applied to nul |
— Can assign label to existing box (via another label)
— Can create new box using built-in new

e Object types are references/pointers/labels to
storage



