CompSci 100e Announcements

Program Design and Analysis I « What is due/coming up?
— Apt due Feb 15

— Markov Assignment due Feb 17
* Will look at parts of it in lab

— Test on Feb 22
¢ Finish slides from last time

February 10, 2011

Prof. Rodger

CompSci 100e, Spring2011 1 CompSci 100e, Spring2011

Simple Inheritance

Allows you to reuse code

Access to Instance Variables(state)

Start with a Class (superclass) * public

Create another class that extends the class (subclass) — Any class can access

The subclass can use the methods from the e private

superclass or override them (use the same name, but

the code is different) — subclasses cannot access
If the subclass redefines a superclass method, can * protected

still call the superclass method with the word — subclasses can access

“super” added.
— other classes cannot access




Example

Student (superclass)
DukeStudent (extends Student)
CosmicStudent (extends DukeStudent)

Look at code, what is the output?

More on Inheritance -Abstract Class

e Abstract class — class that is declared abstract
e Cannot be instantiated — cannot create an object for
this class
¢ Another class must extend this class
* May have some methods declared abstract
— Abstract methods have no bodies

— Those methods have to be implemented in the class that
extends the abstract class

e Example:
— AbstractModel.java is an abstract class
— MarkovModel extends AbstractModel

More on Inheritance - Interface

Class that is declared as an interface
A group of related methods with empty bodies

To implement the interface, your class would
implement the methods for those named in the
interface.

Example

public interface IModel {
public void initialize(Scanner s);
public void process(Object 0);

}

— AbstractModel Implements IModel

What can an Object do (to itself)?

http://www.cs.duke.edu/csed/java/jdk1.6/api/index.html
— Look at java.lang.Object
— What is this class? What is its purpose?

o toString()
— Used to print (System.out.println) an object
— overriding toString() useful in new classes
— String concatenation: String s = "value "+
X5
— Default is basically a pointer-value




What else can you do to an Object?

* equals(Object 0)
— Determines if guts of two objects are the same, must
override, e.g., for using a. index0f(0) in ArrayList a

— Default is ==, pointer equality

* hashCode()

— Hashes object (guts) to value for efficient lookup

e If you're implementing a new class, to play nice with
others you must

— Override equals and hashCode
— Ensure that equal objects return same hashCode value

Objects and values

* Primitive variables are boxes

— think memory location with value

* Object variables are labels that are put on boxes
String s = new String('genome™);
String t = new String(‘'genome™);

if (s == t) {they label the same box}
it (s.equals(t)) {contents of boxes the same}

s | ;

What's in the boxes? "genome" is in the boxes

Objects, values, classes

* For primitive types: int, char, double, boolean

— Variables have names and are themselves boxes
(metaphorically)

— Two int variables assigned 17 are equal with ==

* For object types: String, ArrayList, others
— Variables have names and are labels for boxes
— If no box assigned, created, then label applied to nul l
— Can assign label to existing box (via another label)
— Can create new box using built-in new

* Object types are references/pointers/labels to
storage




