CompSci 100e
Program Design and Analysis |

March 29, 2011

Prof. Rodger

Presenter
Presentation Notes
Don’t print 14 in handout

Announcements

One APT next week — BSTCount

— Will do in class
Written Assignment lists/trees due March 31

New assignment Boggle due April 7
— Will do part of it in lab (last time, and next lab)

Today

— More on trees and analysis with trees
— Recurrence relations

More on Trees

 Focus on binary trees
— Includes binary search trees
— Process tree: root (subtree) (subtree)
— Analyze recursive tree functions

e Recurrence relation

Review: Printing a search tree in order

e When is root printed?
— After left subtree, before right subtree.

void visit(TreeNode t){

Sttt etn;

System.out. ﬁrlntln(t info);
V|S|t(t right

* |norder traversal

e How long for n nodes?
- 0()?

Tree functions

e Compute height of a tree, what is complexity?

int height(Tree root) {
iIT (root == null) return O;
else {
return 1 + Math.max(height(root.left),
height(root.right));
+

}

 Modify function to compute number of nodes
in a tree, does complexity change?

— What about computing number of leaf nodes?

Balanced Trees and Complexity

 Atreeis height-balanced if
— Left and right subtrees are height-balanced
— Left and right heights differ by at most one

£

boolean i1sBalanced(Tree root){
iIT (root == null) return true;
return
isBalanced(root.left) && isBalanced(root.right) &&
Math.abs(height(root.left) — height(root.right)) <= 1;
+

}

What is complexity?

Consider worst case? What does the tree look like?

Consider average case? Assume trees are “balanced” in analyzing
complexity

— Roughly half the nodes in each subtree
— Leads to easier analysis

How to develop recurrence relation?
— Whatis T(n)?
— What other work is done?

How to solve recurrence relation — formula for recursion
Plug, expand, plug, expand, find pattern
— A real proof requires induction to verify correctness

Solving Recurrence Relation

Recurrence relation is a formula that models how
much time the method takes.

T(n) — the time it takes to solve a problem of size n

Basis — smallest case you know how to solve, such
as n=0 or n=1
If two recursive calls formula might be:

— T(n) = T(smaller problem) + T(smaller problem) + work
to put answer together...

On the right side, replace T(smaller) by plugging it
in to the formula

Solving Recurrence Relation (cont)

e Continue replacing the T(smaller) values until
you see a pattern — use k for the pattern

 Then solve for k with respect to N to get a
basis case that has a constant value —this
removes the T term from the right hand side
of the equation and you are left with T(N) = to
terms of N and can easily compute big-Oh

What is average big-Oh for height?

e Write a recurrence relation
* T(0) =
* T(1) =

° "(n) =

What is worst case big-Oh for height?

e Write a recurrence relation
* T(0) =
* T(1) =

° "(n) =

What is average case big-Oh for
is-balanced?

e Write a recurrence relation
* T(1) =
* T(n) =

Recognizing Recurrences

e Solve once, re-use in new contexts
— T must be explicitly identified

— n must be some measure of size of input/parameter
e T(n) is for quicksort to run on an n-element array

T(n)
T(n)
T(n)
T(n)
T(n)

T(n/2)
T(n-1)
2T(n/2)
2T(n/2)
T(n-1)

+ + + + +

oD
oD
oL
Q)
oM

binary search 0()
sequential search 0()
tree traversal 0()
quicksort 0()
selection sort 0()

e Remember the algorithm, re-derive complexity

Recognizing Recurrences

e Solve once, re-use in new contexts
— T must be explicitly identified

— n must be some measure of size of input/parameter
e T(n) is for quicksort to run on an n-element array

T(n)
T(n)
T(n)
T(n)
T(n)

T(n/2)
T(n-1)
2T(n/2)
2T(n/2)
T(n-1)

+ + + + +

oD
oD
oL
Q)
oM

binary search o(logn)
sequential search 0(n)
tree traversal OC n)
quicksort 0(C nlogn)
selection sort oC nz)

e Remember the algorithm, re-derive complexity

BSTCount APT

e Given values for a binary search tree, how
many unique trees are there?

— 1 value = one tree

— 2 values = two trees

— 3 values =5 trees
— N values = ? trees

 Will memoize help?

Recurrences

e |[fT(n)=T(n-1)+ O(1)... where do we see this?
T(n) = T(n-1) + 0(1)
true for all Xso, T(N-1) =
T(n) = [T(n-2) + 1] + 1
= [T(n-3) + 1] + 2
e True for 1, 2, so eureka! We see a pattern
T(n) = T(h-k) + k, trueforallk, letn=k
T(n) T(nh-n) + n = T(0) + n = n

T(n-2)+ 0(1)

 We could solve, we could prove, or remember!

	CompSci 100e�Program Design and Analysis II
	Announcements
	More on Trees
	Review: Printing a search tree in order
	Tree functions
	Balanced Trees and Complexity
	What is complexity?
	Solving Recurrence Relation
	Solving Recurrence Relation (cont)
	What is average big-Oh for height?
	What is worst case big-Oh for height?
	What is average case big-Oh for �is-balanced?
	Recognizing Recurrences
	Recognizing Recurrences
	BSTCount APT
	Recurrences

