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Announcements 

• Written linked lists/trees due today 
• APT BSTCount due Tuesday, April 2 
• Boggle assignment due in one week 

– Will discuss more in lab 
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Abstract Data Type 

• Stack (LIFO) 
– Push (add),  pop (remove) 

• Queue (FIFO) 
– Enqueue (add), dequeue (remove) 

• Priority queue – queue, but best item 
dequeued (example: delete and return the 
minimum each time) 
– Enqueue (add), deleteMin (remove) 
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Priority queue implementation 

• Operations: add and delete min 
• Want to do these operations efficiently 
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Priority Queue sorting 
code below sorts, complexity? 

     
String[] array = {...}; // array filled with data 
PriorityQueue<String> pq = new 

PriorityQueue<String>(); 
for(String s : array) pq.add(s); 
for(int k=0; k < array.length; k++){ 
   array[k] = pq.remove(); 
} 
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Priority Queue top-M sorting 

• What if we have lots and lots and lots of data 
– code below sorts top-M elements, complexity? 

     
    Scanner s = … // initialize;  
    PriorityQueue<String> pq =  
           new PriorityQueue<String>(); 
    while (s.hasNext()) { 
        pq.add(s.next()); 
        if (pq.size() > M) pq.remove(); 
    } 
 

• What’s advantageous about this code? 
– Store everything and sort everything? 
– Store everything, sort first M? 
– What is complexity of sort: O(n log n) 
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PriorityQueue.java (Java 
5+)  

• What about objects inserted into pq? 
– Comparable, e.g., essentially sortable 
– How can we change what minimal means? 
– Implementation uses heap, tree stored in an array 

 
• Use a Comparator for comparing entries we 

can make a min-heap act like a max-heap, see 
PQDemo 
– Where is class Comparator declaration? How 

used? 
– What if we didn't know about 

Collections.reverseOrder? 
• How do we make this ourselves? 

7 CPS100E Spring11 



Priority Queue implementation 
• Heap data structure is fast and reasonably simple 

– Why not use inheritance hierarchy as was used with 
Map? 

– Trade-offs when using HashMap and TreeMap: 
• Time, space, ordering properties, TreeMap support? 

 

• Changing comparison when calculating priority? 
– Create object to replace, or in lieu of compareTo 

• Comparable interface compares this to passed object  
• Comparator interface compares two passed objects 

– Both comparison methods: compareTo() and 
compare() 

• Compare two objects (parameters or self and parameter) 
• Returns –1, 0, +1 depending on <, ==, > 
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Creating Heaps 
• Heap: array-based implementation of binary tree 

used for implementing priority queues: 
– add/insert, peek/getmin, remove/deletemin, O(???) 

 
• Array minimizes storage (no explicit pointers), 

faster too, contiguous (cache) and indexing 
• Heap has shape property and heap/value 

property 
– shape: tree filled at all levels (except perhaps last) and 

filled left-to-right (complete binary tree) 
– each node has value  smaller than both children 
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Array-based heap – one 
implementation for priority queue 

• store “node values” in array 
beginning at index 1 

• for node with index k 
– left child:   index 2*k 
– right child: index 2*k+1 

 
• why is this conducive for 

maintaining heap shape? 
• what about heap property? 
• is the heap a search tree? 
• where is minimal node? 
• where are nodes added? 

deleted? 

 

0 1 2 3 4 5 6 7 8 9 10 

6 10 7 17 13 25 9 21 19 

6 

10 7 

17 13 9 21 

19 25 



Thinking about heaps 
• Where is minimal element? 

– Root, why? 
• Where  is maximal element? 

– Leaves, why? 
• How many leaves are there in an 

N-node heap (big-Oh)? 
–   O(n), but exact? 

• What is complexity of find max in 
a minheap? Why?  
–   O(n), but ½ N? 

• Where is second smallest 
element? Why? 
–   Near root? 
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Thinking about heaps 
• Where is minimal element? 

 
• Where  is maximal element? 

 
• How many leaves are there in an 

N-node heap (big-Oh)? 
 

• What is complexity of find max in 
a minheap? Why?  
 

• Where is second smallest 
element? Why? 
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Adding values to heap 
• to maintain heap shape, must add 

new value in left-to-right order of 
last level 
– could violate heap property 
– move value “up” if too small 
 

• change places with parent if heap 
property violated 
– stop when parent is smaller 
– stop when root is reached 
 

• pull parent down, swapping isn’t 
necessary (optimization) 

 

13 

6 
10 7 

17 9 21 
19 25 8 

13 

6 
10 7 

17 9 21 
19 25 

6 
10 7 

17 9 21 
19 25 13 

8 

insert 8 

bubble 8 up 

6 
7 

17 9 21 
19 25 

8 

13 

10 



Adding values, details 
(pseudocode) 

 void add(Object elt) 
{ 
  // add elt to heap in myList 
  myList.add(elt);  
  int loc = myList.size()-1; 
 
  while (1 < loc &&  
         elt < myList.get(loc/2)){ 
   myList.set(loc,myList.get(loc/2)); 
   loc = loc/2; // go to parent 
  } 
  // what’s true here? 
 
  myList.set(loc,elt); 
} 
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Removing minimal element 
• Where is minimal element? 

– If we remove it, what changes, 
shape/property? 

• How can we maintain shape? 
– “last” element moves to root 
– What property is violated? 

• After moving last element, subtrees 
of root are heaps, why? 
– Move root down (pull child up) 

does it matter where? 
• When can we stop “re-heaping”? 

– Less than both children   
– Reach a leaf  
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Priority Queue implementations 
• Priority queues: average and worst case 

Insert  
average 

Getmin 
(delete) 

Insert  
worst 

Getmin 
(delete) 

Unsorted list   

Sorted list 

Search tree 

Balanced tree 

Heap 

 Heap has O(n) build heap from n elements 
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Priority Queue implementations 
• Priority queues: average and worst case 

Insert  
average 

Getmin 
(delete) 

Insert  
worst 

Getmin 
(delete) 

Unsorted list   

Sorted list 

Search tree 

Balanced tree 

Heap 

log n log n O(n) O(n) 

O(1) log n log n log n 

log n log n log n log n 

O(n) O(1) O(n) O(1) 

O(n) O(1) O(n) O(1) 

 Heap has O(n) build heap from n elements 
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Anita Borg 1949-2003 
• “Dr. Anita Borg tenaciously 

envisioned and set about to 
change the world for women 
and for technology. … she 
fought tirelessly for the 
development technology with 
positive social and human 
impact.” 

• “Anita Borg sought to 
revolutionize the world and the 
way we think about technology 
and its impact on our lives.” 

• http://www.youtube.com/watch
?v=1yPxd5jqz_Q 

http://www.youtube.com/watch?v=1yPxd5jqz_Q
http://www.youtube.com/watch?v=1yPxd5jqz_Q
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