
CompSci 100e
Program Design and Analysis II

March 31, 2011

Prof. Rodger

CPS100E Spring11 1

0 1 2 3 4 5 6 7 8 9 10

6 10 7 17 13 25 9 21 19

6

10 7

17 13 9 21

19 25

Presenter
Presentation Notes
For handout, don’t print slides

Announcements

• Written linked lists/trees due today
• APT BSTCount due Tuesday, April 2
• Boggle assignment due in one week

– Will discuss more in lab

CPS100E Spring11 2

Abstract Data Type

• Stack (LIFO)
– Push (add), pop (remove)

• Queue (FIFO)
– Enqueue (add), dequeue (remove)

• Priority queue – queue, but best item
dequeued (example: delete and return the
minimum each time)
– Enqueue (add), deleteMin (remove)

CPS100E Spring11 3

Priority queue implementation

• Operations: add and delete min
• Want to do these operations efficiently

CPS100E Spring11 4

Priority Queue sorting
code below sorts, complexity?

String[] array = {...}; // array filled with data
PriorityQueue<String> pq = new

PriorityQueue<String>();
for(String s : array) pq.add(s);
for(int k=0; k < array.length; k++){
 array[k] = pq.remove();
}

5 CPS100E Spring11

Priority Queue top-M sorting

• What if we have lots and lots and lots of data
– code below sorts top-M elements, complexity?

 Scanner s = … // initialize;
 PriorityQueue<String> pq =
 new PriorityQueue<String>();
 while (s.hasNext()) {
 pq.add(s.next());
 if (pq.size() > M) pq.remove();
 }

• What’s advantageous about this code?
– Store everything and sort everything?
– Store everything, sort first M?
– What is complexity of sort: O(n log n)

6 CPS100E Spring11

PriorityQueue.java (Java
5+)

• What about objects inserted into pq?
– Comparable, e.g., essentially sortable
– How can we change what minimal means?
– Implementation uses heap, tree stored in an array

• Use a Comparator for comparing entries we

can make a min-heap act like a max-heap, see
PQDemo
– Where is class Comparator declaration? How

used?
– What if we didn't know about

Collections.reverseOrder?
• How do we make this ourselves?

7 CPS100E Spring11

Priority Queue implementation
• Heap data structure is fast and reasonably simple

– Why not use inheritance hierarchy as was used with
Map?

– Trade-offs when using HashMap and TreeMap:
• Time, space, ordering properties, TreeMap support?

• Changing comparison when calculating priority?
– Create object to replace, or in lieu of compareTo

• Comparable interface compares this to passed object
• Comparator interface compares two passed objects

– Both comparison methods: compareTo() and
compare()

• Compare two objects (parameters or self and parameter)
• Returns –1, 0, +1 depending on <, ==, >

8 CPS100E Spring11

Creating Heaps
• Heap: array-based implementation of binary tree

used for implementing priority queues:
– add/insert, peek/getmin, remove/deletemin, O(???)

• Array minimizes storage (no explicit pointers),

faster too, contiguous (cache) and indexing
• Heap has shape property and heap/value

property
– shape: tree filled at all levels (except perhaps last) and

filled left-to-right (complete binary tree)
– each node has value smaller than both children

9 CPS100E Spring11

Array-based heap – one
implementation for priority queue

• store “node values” in array
beginning at index 1

• for node with index k
– left child: index 2*k
– right child: index 2*k+1

• why is this conducive for

maintaining heap shape?
• what about heap property?
• is the heap a search tree?
• where is minimal node?
• where are nodes added?

deleted?

0 1 2 3 4 5 6 7 8 9 10

6 10 7 17 13 25 9 21 19

6

10 7

17 13 9 21

19 25

Thinking about heaps
• Where is minimal element?

– Root, why?
• Where is maximal element?

– Leaves, why?
• How many leaves are there in an

N-node heap (big-Oh)?
– O(n), but exact?

• What is complexity of find max in
a minheap? Why?
– O(n), but ½ N?

• Where is second smallest
element? Why?
– Near root?

6

10 7

17 13 9 21

19 25

0 1 2 3 4 5 6 7 8 9 10

6 10 7 17 13 25 9 21 19

Thinking about heaps
• Where is minimal element?

• Where is maximal element?

• How many leaves are there in an

N-node heap (big-Oh)?

• What is complexity of find max in
a minheap? Why?

• Where is second smallest
element? Why?

6

10 7

17 13 9 21

19 25

0 1 2 3 4 5 6 7 8 9 10

6 10 7 17 13 25 9 21 19

Adding values to heap
• to maintain heap shape, must add

new value in left-to-right order of
last level
– could violate heap property
– move value “up” if too small

• change places with parent if heap
property violated
– stop when parent is smaller
– stop when root is reached

• pull parent down, swapping isn’t
necessary (optimization)

13

6
10 7

17 9 21
19 25 8

13

6
10 7

17 9 21
19 25

6
10 7

17 9 21
19 25 13

8

insert 8

bubble 8 up

6
7

17 9 21
19 25

8

13

10

Adding values, details
(pseudocode)

 void add(Object elt)
{
 // add elt to heap in myList
 myList.add(elt);
 int loc = myList.size()-1;

 while (1 < loc &&
 elt < myList.get(loc/2)){
 myList.set(loc,myList.get(loc/2));
 loc = loc/2; // go to parent
 }
 // what’s true here?

 myList.set(loc,elt);
}

13

6
10 7

17 9 21
19 25

8

13

6
10 7

17 9 21
19 25

0 1 2 3 4 5 6 7 8 9 10

6 10 7 17 13 25 9 21 19

array myList

Removing minimal element
• Where is minimal element?

– If we remove it, what changes,
shape/property?

• How can we maintain shape?
– “last” element moves to root
– What property is violated?

• After moving last element, subtrees
of root are heaps, why?
– Move root down (pull child up)

does it matter where?
• When can we stop “re-heaping”?

– Less than both children
– Reach a leaf

13

6
10 7

17 9 21
19 25

13

25
10 7

17 9 21
19

13

7
10 25

17 9 21
19

13

7
10 9

17 25 21
19

Priority Queue implementations
• Priority queues: average and worst case

Insert
average

Getmin
(delete)

Insert
worst

Getmin
(delete)

Unsorted list

Sorted list

Search tree

Balanced tree

Heap

 Heap has O(n) build heap from n elements

16 CPS100E Spring11

Priority Queue implementations
• Priority queues: average and worst case

Insert
average

Getmin
(delete)

Insert
worst

Getmin
(delete)

Unsorted list

Sorted list

Search tree

Balanced tree

Heap

log n log n O(n) O(n)

O(1) log n log n log n

log n log n log n log n

O(n) O(1) O(n) O(1)

O(n) O(1) O(n) O(1)

 Heap has O(n) build heap from n elements

17 CPS100E Spring11

Anita Borg 1949-2003
• “Dr. Anita Borg tenaciously

envisioned and set about to
change the world for women
and for technology. … she
fought tirelessly for the
development technology with
positive social and human
impact.”

• “Anita Borg sought to
revolutionize the world and the
way we think about technology
and its impact on our lives.”

• http://www.youtube.com/watch
?v=1yPxd5jqz_Q

http://www.youtube.com/watch?v=1yPxd5jqz_Q
http://www.youtube.com/watch?v=1yPxd5jqz_Q

	CompSci 100e�Program Design and Analysis II
	Announcements
	Abstract Data Type
	Priority queue implementation
	Priority Queue sorting
	Priority Queue top-M sorting
	PriorityQueue.java (Java 5+)
	Priority Queue implementation
	Creating Heaps
	Array-based heap – one implementation for priority queue
	Thinking about heaps
	Thinking about heaps
	Adding values to heap
	Adding values, details (pseudocode)
	Removing minimal element
	Priority Queue implementations
	Priority Queue implementations
	Anita Borg 1949-2003

