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Announcements

 Boggle due today
e APT Wordladder — due Tuesday

— Lab this week — work on Wordladder
e Test 2 is April 14

— Will review next time

— Try writing answers for Test 2 CompSci 100 Fall
2010



Compression and Coding

 What gets compressed?

— Save on storage, why is this a good idea?
— Save on data transmission, how and why?

e What is information, how is it compressible?

— Exploit redundancy, without that, hard to compress

e Represent information: code (Morse cf. Huffman)

— Dots and dashes or O’s and 1’s
— How to construct code?



Huffman Coding

e D.A Huffman in early 1950’s: story of invention

— Analyze and process data before compression

— Not developed to compress data “on-the-fly”
 Represent data using variable length codes

— Each letter/chunk assigned a codeword/bitstring

— Codeword for letter/chunk is produced by traversing the
Huffman tree

— Property: No codeword produced is the prefix of another

— Frequent letters/chunk have short encoding, while those that
appear rarely have longer ones

e Huffman coding is optimal per-character coding method



Coding/Compression/Concepts

e For ASCII we use 8 bits, for Unicode 16 bits
— Minimum number of bits to represent N values?
— Representation of genomic data (a, c,g, t)?
— What about noisy genomic data?

e We can use a variable-length encoding, e.g., Huffman

International Morse Code

— How do we decide on lengths? How do we decodc ...
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— Values for Morse code encodings, why?
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http://en.wikipedia.org/wiki/Morse_code

Huffman coding: go go gopbhers

ASCII 3 bits
g 103 1100111 000 ??
o 1111101111 001 ??
p 112 1110000 010
h 104 1101000 011
e 101 1100101 100
r 114 1110010 101
s 115 1110011 110
sp. 32 1000000 111

choose two smallest weights
— combine nodes + weights
— Repeat
— Priority queue?

Encoding uses tree:
— 0 left/1 right
— How many bits?



Huffman coding: go go gophers

ASCII 3 bits

g 103 1100111 000
o 1111101111 001
p 112 1110000 010
h 104 1101000 011
e 101 1100101 100
r 114 1110010 101
s 115 1110011 110
sp. 32 1000000 111

00
01
1100
1101
1110
1111
100
101

* Encoding uses tree/trie:

— 0 left/1 right

— “g” code is
o left left
00

— “p” code is

e right right left left

* 1100



Compress to bits — “go go gophers”

ASCII 3 bits
g 103 1100111 000 00

13 characters total o 111 1101111 001 01

p 112 1110000 010 1100

3 bltS/Char |S 39 bItS h 104 1101000 011 1101

e 101 1100101 100 1110
r 114 1110010 101 1111

8 bits/char is 104 bits s 115 1110011 110 100

Huff: characters that

appear more often have“
shorter codes

sp. 32 1000000 111 101

Huffman coding is 37 bits é E’D é ED

Variable length of bits/char
“g0 go gophers”
0001101000110100011100110111101111100



Building a Huffman tree

e Begin with a forest of single-node trees/tries (leaves)
— Each node/tree/leaf is weighted with character count
— Node stores two values: character and count

 Repeat until there is only one node left: root of tree
— Remove two minimally weighted trees from forest
— Create new tree/internal node with minimal trees as children,
 Weight is sum of children’s weight (no char)
e How does process terminate? Finding minimum?

— Remove minimal trees, hummm......



How do we create Huffman Tree/Trie?

Insert weighted values into priority queue
— What are initial weights? Why?

Remove minimal nodes, weight by sums, re-insert
— Total number of nodes?

PriorityQueue<TreeNode> pg = new PriorityQueue<TreeNode>();
for(int k=0; k < freq.length; k++){
pg.-add(new TreeNode(k,freq[Kk],null,null));

+
while (pg-size() > 1){
TreeNode left = pqg.remove();
TreeNode right = pqg.remove();
pg.-add(new TreeNode(O, left.weight+right.weight,
left,right));
+

TreeNode root = pg.-remove();



Building a tree

“ASIMPLE STRING TO BE ENCODED USING A MINIMAL NUMBER OF BITS”
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Building a tree

“ASIMPLE STRING TO BE ENCODED USING A MINIMAL NUMBER OF BITS”
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Building a tree

“ASIMPLE STRING TO BE ENCODED USING A MINIMAL NUMBER OF BITS”
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Building a tree

“ASIMPLE STRING TO BE ENCODED USING A MINIMAL NUMBER OF BITS”
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Building a tree

“ASIMPLE STRING TO BE ENCODED USING A MINIMAL NUMBER OF BITS”
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Building a tree

“ASIMPLE STRING TO BE ENCODED USING A MINIMAL NUMBER OF BITS”
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Building a tree

“ASIMPLE STRING TO BE ENCODED USING A MINIMAL NUMBER OF BITS”
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Building a tree
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Building a tree

“ASIMPLE STRING TO BE ENCODED USING A MINIMAL NUMBER OF BITS”



Creating compressed file

e Once we have new encodings, read every character
— Write encoding, not the character, to compressed file
— Why does this save bits?
— What other information needed in compressed file?

e How do we uncompress?
— How do we know foo.hf represents compressed file?
— |s suffix sufficient? Alternatives?

e Why is Huffman coding a two-pass method?
— Alternatives?



Uncompression with Huffman

We need the trie to uncompress

— 000100100010011001101111 > 1

— What 1s this?

071 0 ]

As we read a bit, what do we do? N| |O / \
— Golefton 0, gorighton 1 0 /1 0/ "\
— When do we stop? What to do? C R F M

How do we get the trie?

— How did we get it originally? Store 256 int/counts

e How do we read counts?
— How do we store a trie? 20 Questions relevance
e Reading a trie? Leaf indicator? Node values?

?




Decoding a message

01100000100001001101



Decoding a message

1100000100001001101



Decoding a message

100000100001001101



Decoding a message
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Decoding a message
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Decoding a message
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Decoding a message
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Decoding a message
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Decoding a message
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Decoding a message
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Decoding a message
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Decoding a message
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Decoding a message
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Decoding a message
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Decoding a message
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Decoding a message
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Decoding a message
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Decoding a message

48

CompSci 100e, Spring2011



Decoding a message
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Decoding a message
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Other Huffman Issues

e What do we need to decode?
— How did we encode? How will we decode?
— What information needed for decoding?

e Reading and writing bits: chunks and stopping
— Can you write 3 bits? Why not? Why?
— PSEUDO_EOF
— BitInputStream and BitOutputStream: API

e What should happen when the file won’t compress?
— Silently compress bigger? Warn user? Alternatives?



Huffman Complexities

How do we measure? Size of input file, size of alphabet
— Which is typically bigger?

Accumulating character counts:
— How can we do this in O(1) time, though not really
Building the heap/priority queue from counts
— Initializing heap guaranteed
Building Huffman tree
— Why?
Create table of encodings from tree
— Why?
Write tree and compressed file



Good Compsci 100 Assighment?

Array of character/chunk counts, or is this a map?
— Map character/chunk to count, why array?
Priority Queue for generating tree/trie
— Do we need a heap implementation? Why?
Tree traversals for code generation, uncompression
— One recursive, one not, why and which?
Deal with bits and chunks rather than ints and chars
— The good, the bad, the ugly
Create a working compression program
— How would we deploy it? Make it better?
Benchmark for analysis
— What's a corpus?



Other methods

e Adaptive Huffman coding

e Lempel-Ziv algorithms
— Build the coding table on the fly while reading document
— Coding table changes dynamically

— Protocol between encoder and decoder so that everyone is
always using the right coding scheme

— Works well in practice (compress, gz1ip, etc.)
e More complicated methods

— Burrows-Wheeler (bunzip?2)

— PPM statistical methods



Year

1967
1950
1977
1984

1987
1987
1987
1995
1997

Data Compression

compression
important?

How well can you

Scheme Bit/Cha, Why is data
ASCII 7.00
Huffman 4.70
Lempel-Ziv (LZ77) 3.94

Lempel-Ziv-Welch (LZW) - Unix  3.32
compress

(LZH) used by zip and unzip 3.30
Move-to-front 3.24
gZIp 2.71
Burrows-Wheeler 2.29

BOA (statistical data compression) 1.99

compress files
losslessly?

— Is there a limit?

— How to compare?

How do you
measure how much
information?



From bit to byte to char to int to long

e Ultimately everything is stored as eitheraOor 1
— Bit is binary digit a byte is a binary term (8 bits)

— We should be grateful we can deal with Strings rather
than sequences of O's and 1's.

— We should be grateful we can deal with an int rather
than the 32 bits that comprise an int

e |f we have 255 values for R, G, B, how can we
pack this into an int?

— Why should we care, can’t we use one int per color?
— How do we do the packing and unpacking?



More information on bit, int, long

* int values are stored as two's complement
numbers with 32 bits, for 64 bits use the type
long, a char is 16 bits

— Standard in Java, different in C/C++
— Facilitates addition/subtraction for int values

— We don't need to worry about this, except to note:
* Infinity + 1 = - Infinity (see Integer .MAX_ VALUE)
e Math.abs(-Infinity) > Infinity

e Java byte, int, long are signed values, char
unsigned
— What are values for 16-bit char? 8-bit byte?
— Why will this matter in Burrows Wheeler?



Signed, unsigned, and why we care

e Some applications require attention to memory-use
— Differences: one-million bytes, chars, and int

* First requires a megabyte, last requires four megabytes
* When do we care about these differences?

— Memory is cheaper, faster, ...But applications expand to
use it

e Javasigned byte: -128..127, # bi1ts?
— What if we only want 0-2557? (Huff, pixels, ...)
— Convert negative values or use char, trade-offs?

e Java char unsigned: 0. .65,536 # bits?
— Why is char unsigned? Why not as in C++/C?



More details about bits

e How is 13 represented?
— ... 0O 0 1 1 0 1

24 23 22 21 20
— Total is 8+4+1 =13
 What is bit representation of 32? Of 15? Of 10237
— What is bit-representation of 2" - 17
— What is bit-representation of 0? Of -17?

e Study later, but -1 is all 1’s, left-most bit determines < 0

 Determining what bits are on? How many on?
— Understanding, problem-solving



How are data stored?

e To facilitate Huffman coding we need to
read/write one bit
— Why do we need to read one bit?
— Why do we need to write one bit?
— When do we read 8 bits at a time? 32 bits?

e We can't actually write one bit-at-a-time. We
can't really write one char at a time either.

— Qutput and input are buffered,minimize memory
accesses and disk accesses

— Why do we care about this when we talk about data

structures and algorithms?
e Where does data come from?



How do we buffer char output?

e Done for us as part of InputStream and Reader classes
— InputStreams are for reading bytes
— Readers are for reading char values
— Why do we have both and how do they interact?

Reader r = new
InputStreamReader (System.in);

— Do we need to flush our buffers?

* In the pastJava IO has been notoriously slow
— Do we care about I? About O?
— This is changing, and the java.nio classes help

* Map afile to a region in memory in one operation



Buffer bit output

e To buffer bits we store bits in a buffer (duh)

— When the buffer is full, we write it.

— The buffer might overflow, e.g., in process of writing
10 bits to 32-bit capacity buffer that has 29 bits in it

— How do we access bits, add to buffer, etc.?

 We need to use bit operations

— Mask bits -- access individual bits
— Shift bits — to the left or to the right
— Bitwise and/or/negate bits



Representing pixels

 Pixel typically stores RGB and alpha/transparency
values

— Each RGB is a value in the range 0 to 255

— The alpha value is also in range 0 to 255

Pixel red = new Pixel(255,0,0,0);
Pixel white = new Pixel(255,255,255,0);

e A picture is simply an array of int values

voild process(int pixel%{
Int blue = pixel & OXTT;
int green = (pixel >> 8) & Oxff;
INt red = (pixel >> 16) & Oxff;



Bit masks and shifts

void process(lnt pixel){
int blue pixel & OxfT;
INt green (pixel >> 8) & OxffT,;
int red (pixel >> 16) & OxfT;

by
e Hexadecimal number: 0,1,2,3,4,5,6,7,8,9,a,b,c,d,e,f
— fis 15, in binary this is 1111, one less than 10000
— The hex number Oxff is an 8 bit number, all ones
e Bitwise & operator creates an 8 bit value, 0—255
— Must use an int/char, what happens with byte?
— 1&1 ==1, otherwise we get 0 like logical and
— Similarly we have |, bitwise or
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