CompSci 100e
Program Design and Analysis |

April 7, 2011

Prof. Rodger

Announcements

 Boggle due today
e APT Wordladder — due Tuesday

— Lab this week — work on Wordladder
e Test 2 is April 14

— Will review next time

— Try writing answers for Test 2 CompSci 100 Fall
2010

Compression and Coding

 What gets compressed?

— Save on storage, why is this a good idea?
— Save on data transmission, how and why?

e What is information, how is it compressible?

— Exploit redundancy, without that, hard to compress

e Represent information: code (Morse cf. Huffman)

— Dots and dashes or O’s and 1’s
— How to construct code?

Huffman Coding

e D.A Huffman in early 1950’s: story of invention

— Analyze and process data before compression

— Not developed to compress data “on-the-fly”
 Represent data using variable length codes

— Each letter/chunk assigned a codeword/bitstring

— Codeword for letter/chunk is produced by traversing the
Huffman tree

— Property: No codeword produced is the prefix of another

— Frequent letters/chunk have short encoding, while those that
appear rarely have longer ones

e Huffman coding is optimal per-character coding method

Coding/Compression/Concepts

e For ASCII we use 8 bits, for Unicode 16 bits
— Minimum number of bits to represent N values?
— Representation of genomic data (a, c,g, t)?
— What about noisy genomic data?

e We can use a variable-length encoding, e.g., Huffman

International Morse Code

— How do we decide on lengths? How do we decodc ...

7

— Values for Morse code encodings, why?

ce
4 space
A * = U .o mm
B mueee v oo mm
C - W o = -
D [N X - s mm
E . Y - mm mm
F oo mme z -
— - e - G Jn—
H ssee
I .
T - -
K - 1T o o -
L -ee 2 * o mm mm mm
M —— 3 oo o mm mm
N - 4 sessomm
o] L8 0§ 3 eeseee
P
Q
R
s
T

http://en.wikipedia.org/wiki/Morse_code

Huffman coding: go go gopbhers

ASCII 3 bits
g 103 1100111 000 ??
o 1111101111 001 ??
p 112 1110000 010
h 104 1101000 011
e 101 1100101 100
r 114 1110010 101
s 115 1110011 110
sp. 32 1000000 111

choose two smallest weights
— combine nodes + weights
— Repeat
— Priority queue?

Encoding uses tree:
— 0 left/1 right
— How many bits?

Huffman coding: go go gophers

ASCII 3 bits

g 103 1100111 000
o 1111101111 001
p 112 1110000 010
h 104 1101000 011
e 101 1100101 100
r 114 1110010 101
s 115 1110011 110
sp. 32 1000000 111

00
01
1100
1101
1110
1111
100
101

* Encoding uses tree/trie:

— 0 left/1 right

— “g” code is
o left left
00

— “p” code is

e right right left left

* 1100

Compress to bits — “go go gophers”

ASCII 3 bits
g 103 1100111 000 00

13 characters total o 111 1101111 001 01

p 112 1110000 010 1100

3 bltS/Char |S 39 bItS h 104 1101000 011 1101

e 101 1100101 100 1110
r 114 1110010 101 1111

8 bits/char is 104 bits s 115 1110011 110 100

Huff: characters that

appear more often have“
shorter codes

sp. 32 1000000 111 101

Huffman coding is 37 bits é E’D é ED

Variable length of bits/char
“g0 go gophers”
0001101000110100011100110111101111100

Building a Huffman tree

e Begin with a forest of single-node trees/tries (leaves)
— Each node/tree/leaf is weighted with character count
— Node stores two values: character and count

 Repeat until there is only one node left: root of tree
— Remove two minimally weighted trees from forest
— Create new tree/internal node with minimal trees as children,
 Weight is sum of children’s weight (no char)
e How does process terminate? Finding minimum?

— Remove minimal trees, hummm......

How do we create Huffman Tree/Trie?

Insert weighted values into priority queue
— What are initial weights? Why?

Remove minimal nodes, weight by sums, re-insert
— Total number of nodes?

PriorityQueue<TreeNode> pg = new PriorityQueue<TreeNode>();
for(int k=0; k < freq.length; k++){
pg.-add(new TreeNode(k,freq[Kk],null,null));

+
while (pg-size() > 1){
TreeNode left = pqg.remove();
TreeNode right = pqg.remove();
pg.-add(new TreeNode(O, left.weight+right.weight,
left,right));
+

TreeNode root = pg.-remove();

Building a tree

“ASIMPLE STRING TO BE ENCODED USING A MINIMAL NUMBER OF BITS”

Building a tree

“ASIMPLE STRING TO BE ENCODED USING A MINIMAL NUMBER OF BITS”

Building a tree

“ASIMPLE STRING TO BE ENCODED USING A MINIMAL NUMBER OF BITS”

RoOR
DO OO

Building a tree

“ASIMPLE STRING TO BE ENCODED USING A MINIMAL NUMBER OF BITS”

2
RoOR P
DO OO

Building a tree

“ASIMPLE STRING TO BE ENCODED USING A MINIMAL NUMBER OF BITS”

o @ é@\@ é@\@
/ N\ / N\ G D L R
OO OO

Building a tree

“ASIMPLE STRING TO BE ENCODED USING A MINIMAL NUMBER OF BITS”

= RoR
R @ OO O
O@@ @@ G D L R

Building a tree

“ASIMPLE STRING TO BE ENCODED USING A MINIMAL NUMBER OF BITS”

2R RoR
OB Of OO O
O@@ T@@ G D L R

Building a tree

“ASIMPLE STRING TO BE ENCODED USING A MINIMAL NUMBER OF BITS”

Building a tree

“ASIMPLE STRING TO BE ENCODED USING A MINIMAL NUMBER OF BITS”

Building a tree

“ASIMPLE STRING TO BE ENCODED USING A MINIMAL NUMBER OF BITS”

Building a tree

“ASIMPLE STRING TO BE ENCODED USING A MINIMAL NUMBER OF BITS”

Building a tree

“ASIMPLE STRING TO BE ENCODED USING A MINIMAL NUMBER OF BITS”

Building a tree

“ASIMPLE STRING TO BE ENCODED USING A MINIMAL NUMBER OF BITS”

Building a tree

“ASIMPLE STRING TO BE ENCODED USING A MINIMAL NUMBER OF BITS”

Building a tree

“ASIMPLE STRING TO BE ENCODED USING A MINIMAL NUMBER OF BITS”

Building a tree

“ASIMPLE STRING TO BE ENCODED USING A MINIMAL NUMBER OF BITS”

Building a tree

“ASIMPLE STRING TO BE ENCODED USING A MINIMAL NUMBER OF BITS”

Building a tree

“ASIMPLE STRING TO BE ENCODED USING A MINIMAL NUMBER OF BITS”

Creating compressed file

e Once we have new encodings, read every character
— Write encoding, not the character, to compressed file
— Why does this save bits?
— What other information needed in compressed file?

e How do we uncompress?
— How do we know foo.hf represents compressed file?
— |s suffix sufficient? Alternatives?

e Why is Huffman coding a two-pass method?
— Alternatives?

Uncompression with Huffman

We need the trie to uncompress

— 000100100010011001101111 > 1

— What 1s this?

071 0]

As we read a bit, what do we do? N| |O / \
— Golefton 0, gorighton 1 0 /1 0/ "\
— When do we stop? What to do? C R F M

How do we get the trie?

— How did we get it originally? Store 256 int/counts

e How do we read counts?
— How do we store a trie? 20 Questions relevance
e Reading a trie? Leaf indicator? Node values?

?

Decoding a message

01100000100001001101

Decoding a message

1100000100001001101

Decoding a message

100000100001001101

Decoding a message

00000100001001101

/v@ I@\@ x
9\ O
@) A Ao
& "o
® ool
AL O

Decoding a message

0000100001001101

/v@ I@\@ x
9\ O
@) A Ao
& ROk
® ool
AL O

O

Decoding a message

000100001001101

/v@ I@\@ x
9\ O
@) A Ao
& ROL
® Poach
AL O

O

36

CompSci 100e, Spring2011

Decoding a message

00100001001101

/v@ I@\@ x
9\ O
@) A Ao
& ROL
® Poach
AL O

O

Decoding a message

0100001001101
\
O
M 4\
@ ®
G D

O

Decoding a message

/v@l@\@R
of "
_ ® A Ao
= o e
AV
m A=) 2
a ? \@M%/_“ -
@
/@N @F
& \@m@c
SOL

O

Decoding a message

00001001101

/v@ I@\@ x
9\ O
@) A Ao
& ROL
® Poach
AL O

GO

Decoding a message

0001001101

/v@ I@\@ x
9\ O
@) A Ao
& ROL
® Poach
AL O

41

CompSci 100e, Spring2011

Decoding a message

001001101

/v@ I@\@ x
9\ O
@) A Ao
& ROL
® Poach
AL O

42

CompSci 100e, Spring2011

Decoding a message

01001101

/v@ I@\@ x
9\ O
@) A Ao
& ROL
® Poach
AL O

43

CompSci 100e, Spring2011

Decoding a message

1001101

GO

Decoding a message

001101

/v@ I@\@ x
9\ O
@) A Ao
& ROL
® Poach
AL O

45

CompSci 100e, Spring2011

Decoding a message

01101

/v@ I@\@ x
9\ O
@) A Ao
& ROL
® Poach
AL O

46

CompSci 100e, Spring2011

Decoding a message

1101

/v@ I@\@ x
9\ O
@) A Ao
& ROL
® Poach
AL O

47

CompSci 100e, Spring2011

Decoding a message

48

CompSci 100e, Spring2011

Decoding a message

49

CompSci 100e, Spring2011

/v@l
Q pFor:
o0 O&
> o
% @ \@D
- = NOE 2
i \ CoS S
S
.m - ® \@m@m@p
Q Ok
a

50

CompSci 100e, Spring2011

Decoding a message

01100000100001001101

/v@ I@\@ x
9\ O
@) A Ao
E "o
® ool
AL O

GOOD

CompSci 100e, Spring2011

51

Other Huffman Issues

e What do we need to decode?
— How did we encode? How will we decode?
— What information needed for decoding?

e Reading and writing bits: chunks and stopping
— Can you write 3 bits? Why not? Why?
— PSEUDO_EOF
— BitInputStream and BitOutputStream: API

e What should happen when the file won’t compress?
— Silently compress bigger? Warn user? Alternatives?

Huffman Complexities

How do we measure? Size of input file, size of alphabet
— Which is typically bigger?

Accumulating character counts:
— How can we do this in O(1) time, though not really
Building the heap/priority queue from counts
— Initializing heap guaranteed
Building Huffman tree
— Why?
Create table of encodings from tree
— Why?
Write tree and compressed file

Good Compsci 100 Assighment?

Array of character/chunk counts, or is this a map?
— Map character/chunk to count, why array?
Priority Queue for generating tree/trie
— Do we need a heap implementation? Why?
Tree traversals for code generation, uncompression
— One recursive, one not, why and which?
Deal with bits and chunks rather than ints and chars
— The good, the bad, the ugly
Create a working compression program
— How would we deploy it? Make it better?
Benchmark for analysis
— What's a corpus?

Other methods

e Adaptive Huffman coding

e Lempel-Ziv algorithms
— Build the coding table on the fly while reading document
— Coding table changes dynamically

— Protocol between encoder and decoder so that everyone is
always using the right coding scheme

— Works well in practice (compress, gz1ip, etc.)
e More complicated methods

— Burrows-Wheeler (bunzip?2)

— PPM statistical methods

Year

1967
1950
1977
1984

1987
1987
1987
1995
1997

Data Compression

compression
important?

How well can you

Scheme Bit/Cha, Why is data
ASCII 7.00
Huffman 4.70
Lempel-Ziv (LZ77) 3.94

Lempel-Ziv-Welch (LZW) - Unix 3.32
compress

(LZH) used by zip and unzip 3.30
Move-to-front 3.24
gZIp 2.71
Burrows-Wheeler 2.29

BOA (statistical data compression) 1.99

compress files
losslessly?

— Is there a limit?

— How to compare?

How do you
measure how much
information?

From bit to byte to char to int to long

e Ultimately everything is stored as eitheraOor 1
— Bit is binary digit a byte is a binary term (8 bits)

— We should be grateful we can deal with Strings rather
than sequences of O's and 1's.

— We should be grateful we can deal with an int rather
than the 32 bits that comprise an int

e |f we have 255 values for R, G, B, how can we
pack this into an int?

— Why should we care, can’t we use one int per color?
— How do we do the packing and unpacking?

More information on bit, int, long

* int values are stored as two's complement
numbers with 32 bits, for 64 bits use the type
long, a char is 16 bits

— Standard in Java, different in C/C++
— Facilitates addition/subtraction for int values

— We don't need to worry about this, except to note:
* Infinity + 1 = - Infinity (see Integer .MAX_ VALUE)
e Math.abs(-Infinity) > Infinity

e Java byte, int, long are signed values, char
unsigned
— What are values for 16-bit char? 8-bit byte?
— Why will this matter in Burrows Wheeler?

Signed, unsigned, and why we care

e Some applications require attention to memory-use
— Differences: one-million bytes, chars, and int

* First requires a megabyte, last requires four megabytes
* When do we care about these differences?

— Memory is cheaper, faster, ...But applications expand to
use it

e Javasigned byte: -128..127, # bi1ts?
— What if we only want 0-2557? (Huff, pixels, ...)
— Convert negative values or use char, trade-offs?

e Java char unsigned: 0. .65,536 # bits?
— Why is char unsigned? Why not as in C++/C?

More details about bits

e How is 13 represented?
— ... 0O 0 1 1 0 1

24 23 22 21 20
— Total is 8+4+1 =13
 What is bit representation of 32? Of 15? Of 10237
— What is bit-representation of 2" - 17
— What is bit-representation of 0? Of -17?

e Study later, but -1 is all 1’s, left-most bit determines < 0

 Determining what bits are on? How many on?
— Understanding, problem-solving

How are data stored?

e To facilitate Huffman coding we need to
read/write one bit
— Why do we need to read one bit?
— Why do we need to write one bit?
— When do we read 8 bits at a time? 32 bits?

e We can't actually write one bit-at-a-time. We
can't really write one char at a time either.

— Qutput and input are buffered,minimize memory
accesses and disk accesses

— Why do we care about this when we talk about data

structures and algorithms?
e Where does data come from?

How do we buffer char output?

e Done for us as part of InputStream and Reader classes
— InputStreams are for reading bytes
— Readers are for reading char values
— Why do we have both and how do they interact?

Reader r = new
InputStreamReader (System.in);

— Do we need to flush our buffers?

* In the pastJava IO has been notoriously slow
— Do we care about I? About O?
— This is changing, and the java.nio classes help

* Map afile to a region in memory in one operation

Buffer bit output

e To buffer bits we store bits in a buffer (duh)

— When the buffer is full, we write it.

— The buffer might overflow, e.g., in process of writing
10 bits to 32-bit capacity buffer that has 29 bits in it

— How do we access bits, add to buffer, etc.?

 We need to use bit operations

— Mask bits -- access individual bits
— Shift bits — to the left or to the right
— Bitwise and/or/negate bits

Representing pixels

 Pixel typically stores RGB and alpha/transparency
values

— Each RGB is a value in the range 0 to 255

— The alpha value is also in range 0 to 255

Pixel red = new Pixel(255,0,0,0);
Pixel white = new Pixel(255,255,255,0);

e A picture is simply an array of int values

voild process(int pixel%{
Int blue = pixel & OXTT;
int green = (pixel >> 8) & Oxff;
INt red = (pixel >> 16) & Oxff;

Bit masks and shifts

void process(lnt pixel){
int blue pixel & OxfT;
INt green (pixel >> 8) & OxffT,;
int red (pixel >> 16) & OxfT;

by
e Hexadecimal number: 0,1,2,3,4,5,6,7,8,9,a,b,c,d,e,f
— fis 15, in binary this is 1111, one less than 10000
— The hex number Oxff is an 8 bit number, all ones
e Bitwise & operator creates an 8 bit value, 0—255
— Must use an int/char, what happens with byte?
— 1&1 ==1, otherwise we get 0 like logical and
— Similarly we have |, bitwise or

	CompSci 100e�Program Design and Analysis II
	Announcements
	Compression and Coding
	Huffman Coding
	Coding/Compression/Concepts
	Huffman coding: go go gophers
	Huffman coding: go go gophers
	Compress to bits – “go go gophers”
	Building a Huffman tree
	How do we create Huffman Tree/Trie?
	Building a tree
	Building a tree
	Building a tree
	Building a tree
	Building a tree
	Building a tree
	Building a tree
	Building a tree
	Building a tree
	Building a tree
	Building a tree
	Building a tree
	Building a tree
	Building a tree
	Building a tree
	Building a tree
	Building a tree
	Building a tree
	Creating compressed file
	Uncompression with Huffman
	Decoding a message
	Decoding a message
	Decoding a message
	Decoding a message
	Decoding a message
	Decoding a message
	Decoding a message
	Decoding a message
	Decoding a message
	Decoding a message
	Decoding a message
	Decoding a message
	Decoding a message
	Decoding a message
	Decoding a message
	Decoding a message
	Decoding a message
	Decoding a message
	Decoding a message
	Decoding a message
	Decoding a message
	Other Huffman Issues
	Huffman Complexities
	Good Compsci 100 Assignment?
	Other methods
	Data Compression
	From bit to byte to char to int to long
	More information on bit, int, long
	Signed, unsigned, and why we care
	More details about bits
	How are data stored?
	How do we buffer char output?
	Buffer bit output
	Representing pixels
	Bit masks and shifts

