CompSci 100e
Program Design and Analysis Il

April 7, 2011

Prof. Rodger

Announcements

* Boggle due today
e APT Wordladder — due Tuesday

— Lab this week — work on Wordladder

e Test 2 is April 14

— Will review next time

— Try writing answers for Test 2 CompSci 100 Fall
2010

Compression and Coding

* What gets compressed?
— Save on storage, why is this a good idea?
— Save on data transmission, how and why?

e What is information, how is it compressible?

— Exploit redundancy, without that, hard to compress

e Represent information: code (Morse cf. Huffman)
— Dots and dashes or O’s and 1’s
— How to construct code?

Huffman Coding

D.A Huffman in early 1950’s: story of invention

— Analyze and process data before compression

— Not developed to compress data “on-the-fly”
Represent data using variable length codes

— Each letter/chunk assigned a codeword/bitstring

— Codeword for letter/chunk is produced by traversing the
Huffman tree

— Property: No codeword produced is the prefix of another

— Frequent letters/chunk have short encoding, while those that
appear rarely have longer ones

Huffman coding is optimal per-character coding method

Coding/Compression/Concepts

For ASCII we use 8 bits, for Unicode 16 bits

— Minimum number of bits to represent N values?
— Representation of genomic data (a, c,g, t)?

— What about noisy genomic data?

We can use a variable-length encoding, e.g., Huffman

ol Marse Code

— How do we decide on lengths? How do we decode ...
— Values for Morse code encodings, why? e e

CompSci 100e, Spring2011

Huffman coding: go go gophers

ASCII 3 bits

g 103 1100111 000 ??
1 2

o 1111101111 001 ??
G S
(n)
1 1 1 1

p 112 1110000 010
h 104 1101000 011
e 101 1100101 100
r 1141110010 101
s 1151110011 110
sp. 32 1000000 111

¢ choose two smallest weights
— combine nodes + weights
— Repeat
— Priority queue?

* Encoding uses tree:
— 0 left/1 right
— How many bits?

Huffman coding: go go gophers

ASCII 3 bits
g 103 1100111 000 00
o 1111101111 001 01
p 112 1110000 010 1100
h 104 1101000 011 1101
e 101 1100101 100 1110
r 1141110010 101 1111
s 1151110011 110 100
sp. 32 1000000 111 101

¢ Encoding uses tree/trie:

— 0 left/1 right

— “g” codeis
o left left
* 00

— “p” code is
* right right left left
e 1100

Compress to bits — “go go gophers”

ASCII 3 bits
g 103 1100111 000 00
o 1111101111 001 01
p 1121110000 010 1100
h 104 1101000 011 1101
e 101 1100101 100 1110
r 1141110010 101 1111
s 1151110011 110 100
sp. 32 1000000 111 101

13 characters total
3 bits/char is 39 bits
8 bits/char is 104 bits

Huff: characters that

appear more often have @b
shorter codes Q;) ;

e Huffman coding is 37 bits
 Variable length of bits/char
* “go go gophers”

e 0001101000110100011100110111101111100

Building a Huffman tree

* Begin with a forest of single-node trees/tries (leaves)
— Each node/tree/leaf is weighted with character count
— Node stores two values: character and count

¢ Repeat until there is only one node left: root of tree
— Remove two minimally weighted trees from forest
— Create new tree/internal node with minimal trees as children,
¢ Weight is sum of children’s weight (no char)
e How does process terminate? Finding minimum?

— Remove minimal trees, hummm......

CompSci 100e, Spring2011 9

How do we create Huffman Tree/Trie?

¢ Insert weighted values into priority queue
— What are initial weights? Why?
¢ Remove minimal nodes, weight by sums, re-insert
— Total number of nodes?
PriorityQueue<TreeNode> pg = new PriorityQueue<TreeNode>();

for(int k=0; k < freq.length; k++){
pg.add(new TreeNode(k,freq[k],null,null));

while (pg-size(Q) > 1){
TreeNode left = pqg.remove();
TreeNode right = pqg.remove();
pg-add(new TreeNode(O, left.weight+right.weight,
left,right));

TreeNode root = pqg.remove();

CompSci 100e, Spring2011 10

Building a tree

“A SIMPLE STRING TO BE ENCODED USING A MINIMAL NUMBER OF BITS”

Building a tree

“ASIMPLE STRING TO BE ENCODED USING A MINIMAL NUMBER OF BITS”

Building a tree

“A SIMPLE STRING TO BE ENCODED USING A MINIMAL NUMBER OF BITS”

& 2R
® ® ® @@ O®
o ¢4\ / N\ G D L R
OO OO
cC F P U
WOOOOOLOLOLOLOOLGLOG
I E N S M A B T

Building a tree

“ASIMPLE STRING TO BE ENCODED USING A MINIMAL NUMBER OF BITS”

VAN Y O\ I 4\
GO OO HdO® & oo
E /N N 4\ s M 4\ / N\ A B
O "e® DO OO
o 4 N T4\ G D L R
DO OO
cC F P U

Creating compressed file

¢ Once we have new encodings, read every character
— Write encoding, not the character, to compressed file
— Why does this save bits?
— What other information needed in compressed file?

* How do we uncompress?
— How do we know foo.hf represents compressed file?
— Is suffix sufficient? Alternatives?

¢ Why is Huffman coding a two-pass method?
— Alternatives?

CompSci 100e, Spring2011 29

Uncompression with Huffman

¢ We need the trie to uncompress
-

— 000100100010011001101111 -
— What is this? 01 OH
¢ As we read a bit, what do we do? E E Q
0/ 1

— Go lefton 0, gorighton 1

071
— When do we stop? What to do? E] [EL] E]

* How do we get the trie?
— How did we get it originally? Store 256 int/counts
* How do we read counts?
— How do we store a trie? 20 Questions relevance?
¢ Reading a trie? Leaf indicator? Node values?

CompSci 100e, Spring2011

Decoding a message

01100000100001001101

CompSci 100e, Spring2011

Other Huffman Issues

What do we need to decode?
— How did we encode? How will we decode?
— What information needed for decoding?

Reading and writing bits: chunks and stopping
— Can you write 3 bits? Why not? Why?

— PSEUDO_EOF

— BitlnputStream and BitOutputStream: API

What should happen when the file won’t compress?
— Silently compress bigger? Warn user? Alternatives?

CompSci 100e, Spring2011

Huffman Complexities

How do we measure? Size of input file, size of alphabet
— Which is typically bigger?

Accumulating character counts:
— How can we do this in O(1) time, though not really
Building the heap/priority queue from counts
— Initializing heap guaranteed
Building Huffman tree __
— Why?
Create table of encodings from tree
— Why?
Write tree and compressed file

CompSci 100e, Spring2011

Good Compsci 100 Assignment?

Array of character/chunk counts, or is this a map?
— Map character/chunk to count, why array?
Priority Queue for generating tree/trie
— Do we need a heap implementation? Why?
Tree traversals for code generation, uncompression
— One recursive, one not, why and which?
Deal with bits and chunks rather than ints and chars
— The good, the bad, the ugly
Create a working compression program
— How would we deploy it? Make it better?
Benchmark for analysis
— What'’s a corpus?

CompSci 100e, Spring2011

Other methods

e Adaptive Huffman coding

* Lempel-Ziv algorithms
— Build the coding table on the fly while reading document
— Coding table changes dynamically

— Protocol between encoder and decoder so that everyone is
always using the right coding scheme

— Works well in practice (compress, gzip, etc.)
¢ More complicated methods

— Burrows-Wheeler (bunzip2)

— PPM statistical methods

Data Compression

Year Scheme Bit/Chay, Why is data

1967 ASCII 7.00 Fompressmn

1950 Huffman 4.70 important?

1977 Lempel-Ziv (LZ77) 39¢ * Howwellcanyou

1984 Lempel-Ziv-Welch (LZW) - Unix ~ 3.32 compress files
compress Iosslessly?

1987 (LZH) used by zip and unzip 3.30 — Is there a limit?

1987 Move-to-front 3.24 — How to compare?

1987 gzip 271 e How doyou

1995 Burrows-Wheeler 2.29 measure how much

1997 BOA (statistical data compression) 1.99 information?

From bit to byte to char to int to long

e Ultimately everything is stored as eithera O or 1
— Bit is binary digit a byte is a binary term (8 bits)

— We should be grateful we can deal with Strings rather
than sequences of 0's and 1's.

— We should be grateful we can deal with an int rather
than the 32 bits that comprise an int

e |f we have 255 values for R, G, B, how can we
pack this into an int?
— Why should we care, can’t we use one int per color?
— How do we do the packing and unpacking?

More information on bit, int, long

* int values are stored as two's complement
numbers with 32 bits, for 64 bits use the type
long, a char is 16 bits

— Standard in Java, different in C/C++
— Facilitates addition/subtraction for int values

— We don't need to worry about this, except to note:
¢ Infinity + 1 = - Infinity (see Integer .MAX_VALUE)
e Math.abs(-Infinity) > Infinity

e Java byte, int, long are signed values, char
unsigned
— What are values for 16-bit char? 8-bit byte?
— Why will this matter in Burrows Wheeler?

Signed, unsigned, and why we care

* Some applications require attention to memory-use

— Differences: one-million bytes, chars, and int
¢ First requires a megabyte, last requires four megabytes
¢ When do we care about these differences?

— Memory is cheaper, faster, ...But applications expand to
use it

e Javasigned byte: -128..127, # bits?
— What if we only want 0-2557? (Huff, pixels, ...)
— Convert negative values or use char, trade-offs?

e Java char unsigned: 0. .65,536 # bits?
— Why is char unsigned? Why not as in C++/C?

More details about bits

* How is 13 represented?
-.._0 0 1 1 0 1

24 23 22 21 20
— Total is 8+4+1 =13
* What is bit representation of 32? Of 15? Of 10237
— What is bit-representation of 2" - 1?
— What is bit-representation of 0? Of -1?

e Study later, but -1 is all 1’s, left-most bit determines < 0

* Determining what bits are on? How many on?
— Understanding, problem-solving

How are data stored?

* To facilitate Huffman coding we need to
read/write one bit
— Why do we need to read one bit?
— Why do we need to write one bit?
— When do we read 8 bits at a time? 32 bits?

e We can't actually write one bit-at-a-time. We
can't really write one char at a time either.

— Output and input are buffered,minimize memory
accesses and disk accesses

— Why do we care about this when we talk about data
structures and algorithms?
¢ Where does data come from?

How do we buffer char output?

* Done for us as part of InputStream and Reader classes
— InputStreams are for reading bytes
— Readers are for reading char values
— Why do we have both and how do they interact?

Reader r = new
InputStreamReader(System.in);

— Do we need to flush our buffers?
* In the past Java IO has been notoriously slow
— Do we care about I? About O?

— This is changing, and the java.nio classes help
* Map afile to a region in memory in one operation

Buffer bit output

* To buffer bits we store bits in a buffer (duh)
— When the buffer is full, we write it.

— The buffer might overflow, e.g., in process of writing
10 bits to 32-bit capacity buffer that has 29 bits in it

— How do we access bits, add to buffer, etc.?

* We need to use bit operations
— Mask bits -- access individual bits
— Shift bits — to the left or to the right
— Bitwise and/or/negate bits

Representing pixels

* Pixel typically stores RGB and alpha/transparency
values
— Each RGB is a value in the range 0 to 255
— The alpha value is also in range 0 to 255

Pixel red = new Pixel(255,0,0,0);
Pixel white = new Pixel(255,255,255,0);

e A picture is simply an array of int values

void process(int plxela{
int blue = pixel
int green = (plxel >> 8) & Oxff;
int red = (pixel >> 16) & Oxff;

Bit masks and shifts

void process(int pixel){

int blue = pixel & Oxff;
int green = (pixel >> 8) & Oxff;
int red = (pixel >> 16) & Oxff;

}

e Hexadecimal number:0,1,2,3,4,5,6,7,8,9,a,b,c,d,e,f
— fis 15, in binary this is 1111, one less than 10000
— The hex number 0xff is an 8 bit number, all ones

* Bitwise & operator creates an 8 bit value, 0—255
— Must use an int/char, what happens with byte?
— 1&1 == 1, otherwise we get 0 like logical and
— Similarly we have |, bitwise or

