
CompSci 100e
Program Design and Analysis II

April 19, 2011

Prof. Rodger

CompSci 100e, Spring 2011 1

Announcements

• Huffman due Thursday, April 21
• APTS (3) due Tuesday, April 26

– Talk about AllWordLadders APT today, Internet APT
next time

– Can do extra APTs
• Extra credit assignments due Wed. April 27

• NOTE: NO LATE ASSIGNMENTS accepted after
Wed, April 27 11:59pm!!!

CompSci 100e, Spring 2011 2

Word Ladder APT
• From->[words]->to

– From hit to cog via [hot,dot,lot,dog,log]
• What words reachable from 'from'?

– Repeat until we get to 'cog'
• Problem: reachable from 'dot'

– Why not include 'hot'?
– Don't re-use words

• Algorithm:
– Find all words 1-away
– From each n-away find (n+1)-away

3 CompSci 100e, Spring 2011

Digression: word ladders
• How many ladders from cart to dire as

shown?
– Enqueue dare more than once?
– Downside? Alternative?

• We want to know number of ladders

that end at W.
– What do we know initially?
– When we put something on the

queue, what do we know?
– How do we keep track?

• Initialize and update per-word statistics

cart

care

tart

dart

dare

dirt

dire

Word Ladder: more details

• # ladders that end at dare
– At each word W

• Ladder length to W
– Calculable from??

• Maps? Queue? Sets?

cart

care

tart

dart

dare

dirt

dire

hire

wire

mire

here

were

mere

pere

Graphs, the Internet, and Everything

http://www.caida.org/

6 CompSci 100e, Spring 2011

http://www.caida.org/

Graphs: Structures and Algorithms

• Mapquest, Tomtom, Garmin, Googlemap
– How do you get from here to there?
– What's a route? How is this known?

• What about The Oracle of Bacon, Erdos Numbers,

and Word Ladders?
– All can be modeled using graphs
– What kind of connectivity does each concept model?

• Graphs are everywhere in the world (of algorithms?)

– What is a graph? Algorithms on graphs?
– Graph representation?

7 CompSci 100e, Spring 2011

http://www.cs.virginia.edu/oracle/
http://www.oakland.edu/enp

Sir Tim Berners-Lee
I want you to realize that, if you
can imagine a computer doing
something, you can program a
computer to do that.

 Unbounded opportunity... limited
only by your imagination. And a
couple of laws of physics.

• TCP/IP, HTTP

– How, Why, What, When?

Vocabulary
• Graphs are collections of vertices

and edges (vertex also called
node)
– Edge connects two vertices

• Direction can be
important, directed edge,
directed graph

• Edge may have associated
weight/cost

• A vertex sequence v0, v1, …, vn-1 is
a path where vk and vk+1 are
connected by an edge.
– If some vertex is repeated, the

path is a cycle
– A graph is connected if there is

a path between any pair of
vertices

NYC Phil

Boston
Wash DC

204

78

190

268

394

LGA LAX

ORD DCA $186

$186

$412 $1701

$441

Graph questions/algorithms
• What vertices are reachable from a given vertex?

– Two standard traversals: depth-first, breadth-first
– connected components, groups of connected vertices

• Shortest path between two vertices (weighted graphs?)

– BFS works, possibly uses more storage than DFS
– Dijkstra’s algorithm efficient, uses a priority queue!

• Longest path in a graph

– No known efficient algorithm

• Visit all vertices without repeating? Visit all edges?
– With minimal cost? Hard!

10 CompSci 100e, Spring 2011

Depth, Breadth, other traversals
• We want to visit every vertex that can be reached from a specific

starting vertex (we might try all starting vertices)
– Make sure we don't visit a vertex more than once

• Why isn't this an issue in trees?
• Mark vertex as visited, use set/array/map for this

– Order in which vertices visited can be important
– Storage/runtime efficiency of traversals important

• What other data structures do we have: stack, queue, …

– What if we traverse using priority queue?

11 CompSci 100e, Spring 2011

Breadth first search
• In an unweighted graph this finds the shortest path between a start

vertex and every vertex
– Visit every node one away from start
– Visit every node two away from start

• This is nodes one away from a node one away
– Visit every node three away from start, …

• Put vertex on queue to start (initially just one)
– Repeat: dequeue vertex, enqueue adjacent vertices
– Avoid enqueueing already visited/queued nodes
– When are 1-away vertices enqueued? 2-away? N?
– How many vertices on queue?

12 CompSci 100e, Spring 2011

Code for breadth first
public void breadth(String vertex){
 Set<String> visited = new TreeSet<String>();
 Queue<String> q = new LinkedList<String>();
 q.add(vertex);
 visited.add(vertex);
 while (q.size() > 0) {
 String current = q.remove();
 // process current
 for(each v adjacent to current){
 if (!visited.contains(v)){// not visited
 visited.add(v);
 q.add(v);
 }
 }
 }
}

13 CompSci 100e, Spring 2011

Pseudo-code for depth-first search
void depthfirst(String vertex){
 if (! alreadySeen(vertex)){
 markAsSeen(vertex);
 System.out.println(vertex);
 for(each v adjacent to
vertex) {

 depthfirst(v);
 }
 }
}

• Clones are stacked up, problem? Can we make

use of stack explicit?
14 CompSci 100e, Spring 2011

BFS compared to DFS
public Set<String> bfs(String start){
 Set<String> visited = new TreeSetString>();
 Queue<String> qu = new LinkedList<String>();
 visited.add(start);
 qu.add(start);

 while (qu.size() > 0){
 String v = qu.remove();
 for(String adj : myGraph.getAdjacent(v)){
 if (! visited.contains(adj)) {
 visited.add(adj);

 qu.add(adj);
 }
 }
 }
 return visited;
}

15 CompSci 100e, Spring 2011

BFS becomes DFS
public Set<String> dfs(String start){
 Set<String> visited = new TreeSet<String>();
 Queue<String> qu = new LinkedList<String>();
 visited.add(start);
 qu.add(start);

 while (qu.size() > 0){
 String v = qu.remove();
 for(String adj : myGraph.getAdjacent(v)){
 if (! visited.contains(adj)) {
 visited.add(adj);

 qu.add(adj);
 }
 }
 }
 return visited;
}

16 CompSci 100e, Spring 2011

DFS arrives
public Set<String> dfs(String start){
 Set<String> visited = new TreeSet<String>();
 Stack<String> qu = new Stack<String>();
 visited.add(start);
 qu.push(start);

 while (qu.size() > 0){
 String v = qu.pop();
 for(String adj : myGraph.getAdjacent(v)){
 if (! visited.contains(adj)) {
 visited.add(adj);

 qu.push(adj);
 }
 }
 }
 return visited;
}

17 CompSci 100e, Spring 2011

What is the Internet?

• The Internet was originally designed as an "overlay"
network running on top of existing phone and other
networks. It is based on a small set of software
protocols that direct routers inside the network to
forward data from source to destination, while
applications run on the Internet to rapidly scale into a
critical global service. However, this success now
makes it difficult to create and test new ways of
protecting it from abuses, or from implementing
innovative applications and services.

http://www.intel.com/labs/features/idf09041.htm

18 CompSci 100e, Spring 2011

http://www.intel.com/labs/features/idf09041.htm

Graph implementations
• Typical operations on graph:

– Add vertex
– Add edge (parameters?)
– getAdjacent(vertex)
– getVertices(..)
– String->Vertex (vice versa)

• Different kinds of graphs

– Lots of vertices, few edges,
sparse graph

• Use adjacency list

– Lots of edges (max # ?) dense
graph

• Use adjacency matrix

Adjacency list

Graph implementations (continued)
• Adjacency matrix

– Every possible edge represented,
how many?

• Adjacency list uses O(V+E) space
– What about matrix?
– Which is better?

• What do we do to get adjacent vertices

for given vertex?
– What is complexity?
– Compared to adjacency list?

• What about weighted edges?

T F …

Shortest path in weighted graph
• We need to modify approach slightly for weighted graph

– Edges have weights, breadth first doesn’t work
– What’s shortest path from A to F in graph below?

• Use same idea as breadth first search

– Don’t add 1 to current distance, add ???
– Might adjust distances more than once
– What vertex do we visit next?

• What vertex is next is key

– Use greedy algorithm: closest
– Huffman is greedy, …

D

E

A

B

C

F

4

3 4

6

3

2

2 8

21 CompSci 100e, Spring 2011

What about connected components?

• What computers are reachable from this one? What people are
reachable from me via acquaintanceship?
– Start at some vertex, depth-first search (breadth?)

• Mark nodes visited
– Repeat from unvisited vertex until all visited

• What is minimal size of a component? Maximal size?

– What is complexity of algorithm in terms of V and E?

• What algorithms does this lead to in graphs?

22 CompSci 100e, Spring 2011

Greedy Algorithms Reviewed
• A greedy algorithm makes a locally optimal decision that leads to a

globally optimal solution
– Huffman: choose minimal weight nodes, combine

• Leads to optimal coding, optimal Huffman tree
– Making change with American coins: choose largest coin

possible as many times as possible
• Change for $0.63, change for $0.32
• What if we’re out of nickels, change for $0.32?

• Greedy doesn’t always work, but it does sometimes
• Weighted shortest path algorithm is Dijkstra’s algorithm, greedy

and uses priority queue

23 CompSci 100e, Spring 2011

Edsger Dijkstra
• Turing Award, 1972
• Algol-60 programming language
• Goto considered harmful
• Shortest path algorithm
• Structured programming
 “Program testing can show the presence of

bugs, but never their absence”
 For me, the first challenge for computing science is to discover how to

maintain order in a finite, but very large, discrete universe that is intricately
intertwined. And a second, but not less important challenge is how to
mould what you have achieved in solving the first problem, into a teachable
discipline: it does not suffice to hone your own intellect (that will join you
in your grave), you must teach others how to hone theirs. The more you
concentrate on these two challenges, the clearer you will see that they are
only two sides of the same coin: teaching yourself is discovering what is
teachable EWD 709

http://www.cs.utexas.edu/users/EWD/transcriptions/EWD07xx/EWD709.html

Dijkstra’s Shortest Path Algorithm
• Similar to breadth first search, but uses a priority queue instead of a queue.

Code below is for breadth first search (distance[] replaces set)

 Vertex cur = q.remove();
 for(Vertex v : adjacent(cur)){
 if (!visited.contains(v)){ // if distance[v] == INFINITY
 visited.add(v); // distance[v] = distance[cur]+1
 q.add(v);
 }
 }

• Dijkstra: Find minimal unvisited node, recalculate costs through node

 Vertex cur = pq.remove();
 for(Vertex v : adjacent(cur))
 if (distance[cur] + graph.weight(cur,v) < distance[v]) {
 distance[v] = distance[cur] + graph.weight(cur,v);
 pq.add(v);
 }

25 CompSci 100e, Spring 2011

Shortest paths, more details
• Single-source shortest path

– Start at some vertex S
– Find shortest path to every

reachable vertex from S
• A set of vertices is processed

– Initially just S is processed
– Each pass processes a vertex

 After each pass, shortest path from S
to any vertex using just vertices from
processed set (except for last vertex)
is always known

• Next processed vertex is closest to S
still needing processing

S A B C E

0 7 2 6 8

0 7 2 5 9 process B

S A B C E

0 6 2 5 7

E

7

7

S

A

B

C 6

2

4

3

2

process C

E

7

7

S

A

B

C 6

2

4

3

2 3

3

1

1

Dijkstra’s algorithm works (greedily)
• Choosing minimal unseen vertex to process

leads to shortest paths

 Vertex cur = pq.remove();
 for(Vertex v : adjacent(cur))
 if (distance[cur]+graph.weight(cur,v) < distance[v]){
 distance[v] = distance[cur] + graph.weight(cur,v);
 pq.add(v);
 }
 }

• We always know shortest path through

processed vertices
– When we choose w, there can’t be a shorter path to

w than distance[w] – it would go through processed
u, we would have chosen u instead of w

27 CompSci 100e, Spring 2011

Shafi Goldwasser
• RCS professor of computer science at MIT

– Twice Godel Prize winner
– Grace Murray Hopper Award
– National Academy
– Co-inventor of zero-knowledge proof

protocols
 How do you convince someone that you know [a

secret] without revealing the knowledge?
• Honesty and Privacy

Work on what you like, what
feels right, I know of no
other way to end up doing
creative work

http://en.wikipedia.org/wiki/Zero-knowledge_proof

	CompSci 100e�Program Design and Analysis II
	Announcements
	Word Ladder APT
	Digression: word ladders
	Word Ladder: more details
	Graphs, the Internet, and Everything
	Graphs: Structures and Algorithms
	Sir Tim Berners-Lee
	Vocabulary
	Graph questions/algorithms
	Depth, Breadth, other traversals
	Breadth first search
	Code for breadth first
	Pseudo-code for depth-first search
	BFS compared to DFS
	BFS becomes DFS
	DFS arrives
	What is the Internet?
	Graph implementations
	Graph implementations (continued)
	Shortest path in weighted graph
	What about connected components?
	Greedy Algorithms Reviewed
	Edsger Dijkstra
	Dijkstra’s Shortest Path Algorithm
	Shortest paths, more details
	Dijkstra’s algorithm works (greedily)
	Shafi Goldwasser

