CompSci 100e
Program Design and Analysis |

| April 26, 2011
. ‘I IL |
|

Prof. Rodger

CompSci 100e, Spring2011

Presenter
Presentation Notes
Skip 13, 15 and 21 for handout

Announcements

* Things due this week:
— APTs due today, Apr 26
— Extra credit assignments due Wed, Apr 27
— No late assignments accepted after Wed night!

 Today
— Test 2 back — solutions posted on calendar page

— Balanced Trees
— Sorting

Final Exam

* Final Exam — Wed, May 4, 7-10pm
— Same room, old Chem 116
— Covers topics up through today
— Closed book, closed notes
— Can bring 4 sheets of paper with your name on it
e Study - practice writing code on paper
— From tests this semester, from old tests
— From classwork, labs, assignments, apts....
e Will have different office hours til exam
— will post on front page of CompSci 100e web page
— Subject to change, check before coming over

Sorting: From Theory to Practice

e Why study sorting?
— Example of algorithm analysis in a simple, useful
setting

— Lots of sorts
e Compare running times
e Compare number of swaps

e http://www.sorting-algorithms.com/

http://www.sorting-algorithms.com/

Sorting out sorts

* Simple, O(n?) sorts --- for sorting n elements
— Selection sort --- n2 comparisons, n swaps, easy to code

— Insertion sort --- n? comparisons, n? moves, stable, fast, can
finish early

— Bubble sort --- n% everything, easiest to code, slowest, ugly

 Divide and conquer sorts: O(n log n) for n elements
— Quick sort: fast in practice, O(n?) worst case

— Merge sort: good worst case, great for linked lists, uses
extra storage for vectors/arrays

e QOther sorts:
— Heap sort, basically priority queue sorting O(n log n)
— Radix sort: doesn’t compare keys, uses digits/characters
— Shell sort: quasi-insertion, fast in practice, non-recursive

Selection sort: summary

e Simple to code n? sort: n? comparisons, only n swaps
e Repeat: Find next min, putitin its place in sorted order

void selectSort(String[] a) {
int len = a.length;
for(int k=0; k < len; k++){
iInt mindex = getMinlndex(a,k,len);
swap(a, k,mindex);
1 ¥ kZk=1+2+...+n=n(n+1)/2=0(n2)
=1

* H# comparisons
Sorted, won’t move

— Swaps? . . 22???
, final position
— Invariant:

SelectionSort
o Start starting 2" pass

 Starting 3" pass starting 4th pass

CompSci 100e, Spring2011

Insertion Sort: summary

Stable sort, O(n?), good on nearly sorted vectors
— Stable sorts maintain order of equal keys
— Good for sorting on two criteria: name, then age

void insertSort(String[] a){
int k, loc; String elt;
for(k=1; k < a.length; ++k) {
elt = a[k];
loc = k;
// shift until spot for elt i1s found
while (0 < loc && elt.compareTo(ajloc-1]) < 0) {
aJloc] = afloc-1]; // shift right
loc=loc-1;
}
afloc] = elt;

} Sorted relativeto @ = | fffeE
each other

Insertion Sort
e Start in 4th pass

everal later passes after more passes

Wn

CompSci 100e, S

Bubble sort: summary of a dog

e For completeness you should know about this sort
— Really, really slow (to run), really really fast (to code)
— Can code to recognize already sorted vector (see insertion)

e Not worth it for bubble sort, much slower than insertion

void bubbleSort(String[] a){
for(int j=a.length-1; j >= 0; J--) {
for(int k=0; k < J, k++) {
1t (a[k] > a[k+1])

swap(a,k,k+1);
¥
} 29999 Sorted, in final
| S | _position

 “bubble” elements down the vector/array

Bubble sort

e Start

 Starting 3" pass

|

starting 2" pass

|

starting 4t" pass

oy

CompSci 100¢, =

11

Summary of simple sorts

e Selection sort has n swaps, good for “heavy” data

— moving objects with lots of state, e.g., ...
* |In C or C++ this is anissue

* In Java everything is a pointer/reference, so swapping is fast
since it's pointer assignment

e |nsertion sort good on nearly sorted data, stable!
— Also foundation for Shell sort, very fast non-recursive

—]Ic\/lore complicated to code, but relatively simple, and
ast

e Bubble sort is a travesty? But it's fast to code if
you know it!

— Can be parallelized, but on one machine don’t go
near it

Quicksort: fast in practice

* Invented in 1962 by C.A.R. Hoare, didn’t
understand recursion

— Worst case is O(n?), but avoidable in nearly aII cases

— In 15)997 Introsort published (Musser, introspective
sort

* Like quicksort in practice, but recognizes when it will be bad and changes to
heapsort

void _quick(String H |nt left, Int right){
(left < rl% t)
int |vo artltlon(a left,right);
UIC Ieft pivot-1
qU|ck a p|v0t+1 right);

}

<=X X X
e Recurrence? g

pivot in@ex

CompSci 100e, Spring2011 13

Partition code for quicksort

what we want

<= pivot > pivot
left / right
pindex
what we have
Iidddddddddddds

left right

invariant
<= > 2??
left / X right

Easy to develop partition

int partition(String[] a,

{

int left, Int right)

string pivot = a[left];
int k, plndex = left;
for(k=left+l, k <= right; k++) {
1T (a[k]-compareTo(pivot) <= 0){
plndex++;
swap(a,k,plndex);

+
swap(a, left,plndex);

loop invariant:

— statement true each time loop test is
evaluated, used to verify correctness
of loop

Can swap into a[left] before loop
— Nearly sorted data still ok

Analysis of Quicksort

* Average case and worst case analysis
— Recurrence for worst case: T(n) =
— What about average?
e Reason informally:
— Two calls vector size n/2
— Four calls vector size n/4
— ... How many calls? Work done on each call?

e Partition: median of three, then sort
— Avoid bad performance on nearly sorted data

Merge sort: worst case O(n log n)

* Divide and conquer --- recursive sort

— Divide list/vector into two halves
e Sort each half
 Merge sorted halves together

— What is complexity of merging two sorted lists?

— What is recurrence relation for merge sort as
described?

T(n) =

 Advantage of array over linked-list for merge sort?
— What about merging, advantage of linked list?
— Array requires auxiliary storage (or very fancy coding)

Merge sort: lists or arrays or ...

 Mergesort for arrays

void mergesort(String[] a, int left, int right){
if (left < right) {
int mid = (right+left)/2;
mergesort(a, left, mid);
mergesort(a, mid+1l, right);
y merge(a, left,mid,right);
+

 What’s different when linked lists used?
— Do differences affect complexity? Why?

e How does merge work?

Summary of O(n log n) sorts
e Quicksort straight-forward to code, very fast

— Worst case is very unlikely, but possible, therefore ...

— But, if lots of elements are equal, performance will be bad
* One million integers from range 0 to 10,000
* How can we change partition to handle this?

e Merge sort is stable, it’s fast, good for linked
lists, harder to code?

— Worst case performance is O(n log n), compare quicksort
— Extra storage for array/vector

e Heapsort, good worst case, not stable,
coding?

— Basically heap-based priority queue in a vector

Other sorts

e Shellsort

— Divide and conquer approach then insertion sort kicks
in

— Named after?

e Timsort
— Sort in python
— Named after?
— Derived from mergesort and insertionsort

— Very fast on real world data, using far fewer than the
worst case of O(n log n)

Presenter
Presentation Notes
Tim sort is named after Tim Peters

e Start

r

 Starting 3" pass

ShellSort

starting 2" pass

|

starting 4t" pass

"

CompSci 100e, Spring2011

22

Sorting in practice

Rarely will you need to roll your own sort, but when
you do ...

— What are key issues?

If you use a library sort, you need to understand the
interface

— In C++ we have STL
e STLhassort, and stable sort

— In C sort is complex to use because arrays are ugly

— In Java guarantees and worst-case are important
* Why won’t quicksort be used?

Comparators allow sorting criteria to change

Non-comparison-based sorts

lower bound: Q(n log n) for
comparison based sorts (like
searching lower bound)

bucket sort/radix sort are not-
comparison based, faster
asymptotically and in practice

sort a vector of ints, all ints in the
range 1..100, how?

— (use extra storage)

radix: examine each digit of
numbers being sorted

— One-pass per digit
— Sort based on digit

2334562544 734226 10 16

0 1 2 3 4 5 6

1042 2373 34 44 25 56 26 16

7

8

1016232526 3442445673

	CompSci 100e�Program Design and Analysis II
	Announcements
	Final Exam
	Sorting: From Theory to Practice
	Sorting out sorts
	Selection sort: summary
	SelectionSort
	Insertion Sort: summary
	Insertion Sort
	Bubble sort: summary of a dog
	Bubble sort
	Summary of simple sorts
	Quicksort: fast in practice
	Partition code for quicksort
	Analysis of Quicksort
	Analysis of Quicksort
	Merge sort: worst case O(n log n)
	Merge sort: worst case O(n log n)
	Merge sort: lists or arrays or …
	Summary of O(n log n) sorts
	Other sorts
	ShellSort
	Sorting in practice
	Non-comparison-based sorts
	Non-comparison-based sorts

