
Lecture 10, Feb 15, 2011,RSA

Chinese remainder theorem. We have shown that the x0 = a1m2y1+a2m1y2
is a solution. It is also clear that the integers of the form x0 + `m1m2 are
also solutions to the equations. It remains to show that all the solutions can
be expressed in this way.

Assume x is another solution to the problem, and we have

x ≡ x0 mod m1

x ≡ x0 mod m2

By definitions, there exists integer p and q such that x− x0 = pm1 = qm2.
This suggests that m1|qm2. Since gcd(m1,m2) = 1, we have m1|q and we
can rewrite q as q′m1 for some integer q′.

Therefore, we have x− x0 = q′m1m2. �

We can extend the results to the case with more than two equations:

x ≡ a1 mod m1

x ≡ a2 mod m2

· · ·
x ≡ ak mod mk,

Assume m1,m2, . . . ,mk are pairwise relative prime, then we first solve

M1y1 ≡ 1 mod m1

M2y2 ≡ 1 mod m2

· · ·
Mkyk ≡ 1 mod mk,

where

Mj =
m1m2 · · ·mk

mj

Then one solution to the equation is given by

x0 = a1M1y1 + a2M2y2 + · · · akMkyk,

and all other solutions are of the form x0 + `m1m2 · · ·mk, where ` is some
integer.

The Chinese remainder theorem can be used to represent large integers.
We select moduli such that they are pairwise relative prime. Then for any
integer a, we represent it as a tuple

(a mod m1, a mod m2, . . . , a mod mk)
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Then, we can perform arithmetic operations on the components. For
instance, let the moduli be 99, 98, 97, and 95. Then 123684 = (33, 8, 9, 89)
and 413456 = (32, 92, 42, 16).

(33, 8, 9, 89) + (32, 92, 42, 16) = (65, 2, 51, 10)

Solving

x ≡ 65 mod 99

x ≡ 2 mod 98

x ≡ 51 mod 97

x ≡ 10 mod 95

recovers the correct solution 537140.
Now we consider cryptography. The sender (Alice) wants to encrypt a

message such that the intended receiver (Bob) is able to decipher it.
Traditionally, Alice and Bob agree on a secret code ahead of the time,

and use it to both encrypt and decipher the message. For instance, they
may agree to shift the alphabeta by some fixed number of positions. The
weakness is the secret code. It may be stolen or cracked.

On the other hand, we have what is called a public key cryptography.
In this setting, each people has a public key and a private key, and they
transmit the message in this way.

(1) Bob gets Alice’s public key PA.
(2) Bob encrypts his message c = PA(M).
(3) Bob sends c to Alice.
(4) Alice deciphers the code using her private key M = SA(c).

This process requires: (a) the public key should be easy to compute, meaning
it doesn’t take too much time to encrypt a message; (b) the public key
should have an inverse so that the message can be deciphered; (c) the inverse
function should be only easy to compute for the owner.

Specifically,

(1) Choose two large primes p and q and let n = pq.
(2) Choose e 6= 1 relative prime to (p− 1)(q − 1) and let d be its multi-

plicative inverse modulo (p− 1)(q − 1).
(3) The public keys are n and e, and the private key is d.

f = xe mod n

f−1 = xd mod n

Correctness of RSA. We need to show that

(M e)d ≡M mod n.

Since e and d are multiplicative inverses modulo (p− 1)(q − 1),

ed = 1 + k(p− 1)(q − 1),
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for some integer k. Then, if M is not divisible by p, we have

M ed ≡M1+k(p−1)(q−1) mod p

≡M(Mp−1)k(q−1) mod p

≡M1k(q−1) mod p

≡M

Also, M ed ≡M mod p if M is divisible by p. Thus,

M ed ≡M mod p, ∀M.

Similarly, we have
M ed ≡M mod q, ∀M.

By Chinese remainder theorem, we have

M ed ≡M mod (pq), ∀M.

�

Attacks against plain RSA: if an attacker wants to know the decryption
of a ciphertext c = me mod n, he may ask the holder of the private key
to decipher an unsuspicious-looking ciphertext c′ = cre mod n for some
value r chosen by the attacker. Because c′ is the encryption of mr mod n,
hence if the attacker knows mr mod n, he can then multiplying with the
multiplicative inverse of r to get m.


