
ARTICLES

Deciphering the splicing code
Yoseph Barash1,2*, John A. Calarco2*, Weijun Gao1, Qun Pan2, Xinchen Wang1,2, Ofer Shai1, Benjamin J. Blencowe2

& Brendan J. Frey1,2,3

Alternative splicing has a crucial role in the generation of biological complexity, and its misregulation is often involved in
human disease. Here we describe the assembly of a ‘splicing code’, which uses combinations of hundreds of RNA features to
predict tissue-dependent changes in alternative splicing for thousands of exons. The code determines new classes of splicing
patterns, identifies distinct regulatory programs in different tissues, and identifies mutation-verified regulatory sequences.
Widespread regulatory strategies are revealed, including the use of unexpectedly large combinations of features, the
establishment of low exon inclusion levels that are overcome by features in specific tissues, the appearance of features
deeper into introns than previously appreciated, and the modulation of splice variant levels by transcript structure
characteristics. The code detected a class of exons whose inclusion silences expression in adult tissues by activating
nonsense-mediated messenger RNA decay, but whose exclusion promotes expression during embryogenesis. The code
facilitates the discovery and detailed characterization of regulated alternative splicing events on a genome-wide scale.

Transcripts from approximately 95% of multi-exon human genes are
spliced in more than one way, and in most cases the resulting tran-
scripts are variably expressed between different cell and tissue types1,2.
This process of alternative splicing shapes how genetic information
controls numerous critical cellular processes, and it is estimated that
15% to 50% of human disease mutations affect splice site selection3.

Tissue-dependent splicing is regulated by trans-acting factors,
cis-acting RNA sequence motifs, and other RNA features, such as
exon length and secondary structure. For nearly two decades,
researchers have sought to define a regulatory splicing code in the
form of a set of RNA features that can account for abundances of
spliced isoforms4–8. Through detailed investigation of a small number
of examples of regulated splicing9, it is clear that a splicing code must
account for various features that act together to control splicing.
Furthermore, a code should enable the reliable prediction of the
regulatory properties of previously uncharacterized exons and the
effects of mutations within regulatory elements.

Here we describe a method for inferring a splicing regulatory code
that addresses these challenges (Fig. 1a). We evaluate the code using a
variety of criteria, describe and verify predictions made by the code,
and demonstrate the usefulness of the code in scientific exploration.

Isoform quantification and RNA features

Our method takes as an input a collection of exons and surrounding
intron sequences and data profiling how those exons are spliced in
different tissues. The method assembles a code that can predict how a
transcript will be spliced in different tissues.

We used data profiling 3,665 cassette-type alternative exons across
27 diverse mouse tissues, including whole-embryo stages and a variety
of adult tissues10. For each exon and each tissue, this data set provides a
percentage inclusion value, which is an estimate of the fraction of
transcripts that include the exon11. Tissues were grouped to form four
tissue types: central nervous system (CNS) tissues, muscle tissues,
digestive system tissues, and whole embryos, with embryonic stem
cells added to the latter group (Supplementary Information 1 and
Fig. 1). To correct for tissue-independent baseline exon inclusion

levels and measurement noise, we converted the percentage inclusion
value for each data point (exon and tissue type) to three probabilities,
qinc, qexc and qnc, of increased exon inclusion (‘inc’), increased exon
exclusion, that is, skipping (‘exc’), and no change (‘nc’). q denotes the
set of three probabilities and we refer to it as a ‘splicing pattern’. Of all
exons exhibiting a high probability of increased inclusion (qinc $ 0.99)
or exclusion (qexc $ 0.99), 51%, 23%, 32% and 25% showed changes
in CNS, muscle, embryonic and digestive tissues, respectively, whereas
24% were regulated in more than one tissue type.

Code assembly requires a set of relevant features derived from
exonic and intronic sequences. We constructed a compendium of
1,014 features of four types: known motifs, new motifs, short motifs
and features describing transcript structure (see later and Sup-
plementary Information 2). Motif features correspond to consensus
sequences, sequence clusters, or position-specific score matrices, and
may be associated with specific RNA regions (Fig. 1a).

A literature survey yielded 171 ‘known motifs’ found near tissue-
regulated exons10,12–14 or associated with splicing factor binding pre-
ferences, including [U]GCAUG (bound by A2bp1 and A2bp2,
referred to here as Fox proteins15,16), YCAY clusters (bound by
Nova1 and Nova2, referred to as Nova17,18), CU-rich sequences
(bound by Ptbp1 and its neuronal variant Ptbp2, referred to as
PTB and nPTB19,20), YGCUYK-like CUG- and UG-rich sequences
(bound by Mbnl, Cugbp and related CELF-like factors21),
ACUAAY (bound by Quaking-like Qk and Star22 factors, later
referred to as Qkl), U-rich sequences (bound by Tia1 and Tial1, later
referred to as Tia1/Tiar), and elements associated with serine/argi-
nine-rich (SR) and heterogenous nuclear ribonucleoprotein factors. As
interspecies conservation of intronic sequences is associated with
alternative splicing1,12,23, we included interval-averaged conservation
levels as features and also region-specific motif scores weighted by con-
servation. Note that although a motif may be known, its regulatory
activity in the context of other features is usually not.

The compendium includes 326 ‘new motifs’ that have weak or no
known evidence for roles in tissue-dependent splicing, including 12
clusters of validated or putative exonic and intronic splicing enhancers
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(ESEs and ISEs) and silencers (ESSs and ISSs), which are 6–8 nucleotides
long and were identified without regard to possible tissue-dependent
roles24–26, and 314 5–7-nucleotide-long motifs that are conserved in
intronic sequences neighbouring alternative exons27. There are also
460 region-specific counts of 1–3-nucleotide ‘short motifs’, because
such features were previously associated with alternative splicing28.
We included 57 ‘transcript structure’ features implicated in determin-
ing spliced transcript levels, such as exon/intron lengths, regional
probabilities of secondary structures29, and whether exon inclusion/
exclusion introduces a premature termination codon (PTC).

In addition to the feature compendium, we constructed a set of
,1,800 ‘unbiased motifs’ by performing a de novo search10 for each
tissue type and direction of splicing change (Supplementary
Information 3). Later, we report results obtained with and without
using these features.

Assembling a high-information code

Our method seeks a code that is able to predict the splicing patterns of
all exons as accurately as possible, based solely on the tissue type and
proximal RNA features. The putative features for a particular exon
are appended to make a feature vector r, and the corresponding
prediction in tissue type c is denoted p(c,r). Like q, p(c,r) consists
of probabilities of increased inclusion or exclusion, or no change. The
code is combinatorial and accounts for how features cooperate or
compete in a given tissue type, by specifying a subset of important

features, thresholds on feature values and softmax parameters30 relat-
ing active feature combinations to the prediction p(c,r) (Supplemen-
tary Information 4).

We use a measure of ‘code quality’ that is based on information
theory31 (see Methods). It can be viewed as the amount of informa-
tion about genome-wide tissue-dependent splicing accounted for by
the code. A code quality of zero indicates that the predictions are no
better than guessing, whereas a higher code quality indicates
improved prediction capability.

To assemble a code, our method recursively selects features from
the compendium, while optimizing their thresholds and softmax
parameters to maximize code quality (Supplementary Informa-
tion 5). The code quality increased monotonically during assembly,
but diminished gains were observed after 200 features were included
(Fig. 1b, c, based on fivefold cross-validation). The final assembled
code contained ,200 features. When a code was assembled using the
compendium plus the unbiased motifs, the increase in code quality
did not exceed 1 s.d. in error (data not shown), but, interestingly,
some of the unbiased motifs that did not correspond to any com-
pendium features were selected and subsequently experimentally
verified (see later).

To quantify the contributions of its different components, we
compared our final assembled code to partial codes whose only
inputs were the tissue type, previously described motifs, conservation
levels, or the compendium with transcript structure features or con-
servation levels removed (Fig. 1d).

Predicting alternative splicing

On the task of distinguishing alternatively spliced exons from con-
stitutively spliced exons, our method achieves a true positive rate of
more than 60% at a false positive rate of 1% (Supplementary
Information 6). To address the more difficult challenge of predicting
tissue-dependent regulation, we applied the code to various sets of
unique test exons (exons not similar to those used during code
assembly) and verified the predictions using microarray data, PCR
with reverse transcription (RT–PCR) and focused studies (see later
and Supplementary Information 5).

We first asked whether the theoretical ranking of the different
codes shown in Fig. 1d corresponds well to their relative abilities to
predict microarray-assessed tissue-dependent regulation (see
Methods). Indeed, the final assembled code achieved significantly
higher accuracy than the partial codes (Fig. 2a). For exons in genes
with median expression in the top 20th percentile, at a false positive
rate of 1%, a true positive rate of 21% was achieved, and this rose to
51% for a false positive rate of 10%.

We next asked how well the splicing code predicts significant
differences in the percentage exon inclusion between pairs of tissues,
for cases where the predicted difference is large (Fig. 2b and
Supplementary Fig. 12). For microarray data, the splicing code
correctly predicted the direction of change (positive or negative) in
82.4% of cases (P , 1 3 10230, Binomial test; see Methods). For RT–
PCR evaluation, 14 exons that the splicing code predicted would
exhibit significant tissue-dependent splicing were profiled in 14
diverse tissues. The splicing code correctly predicted the direction
of change in 93.3% of cases (P , 1 3 10210, Binomial test). A scatter-
plot comparing predictions and measurements (Fig. 2c) illustrates
that the code is able to predict an exon’s direction of regulation better
than its percentage inclusion level. Figure 2d shows RT–PCR data
and predictions for four representative exons.

To assess whether the code recapitulates results from experimental
studies of individual exons and tissue-specific splicing factors, we
surveyed 97 CNS- and/or muscle-regulated exons targeted by Nova,
Fox, PTB, nPTB and/or unknown factors18,19,32–39. For each test exon,
we extracted its features, applied the code and examined whether or
not it correctly predicts splicing patterns in CNS or muscle tissues
(Supplementary Table 3). The code’s predictions were correct for 74%
of the combined set of 97 exons (P , 1 3 10241, Bernoulli test), 65%
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Figure 1 | Assembling the splicing code. a, The code extracts hundreds of
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of the Nova targets (P , 1 3 10220), 95% of the Fox targets
(P , 1 3 10215) and 91% of the PTB/nPTB targets (P , 1 3 1028).

To our knowledge, this is the first time tissue-dependent splicing
changes have been predicted from sequence information alone and
the prediction accuracy has been quantitatively evaluated.

Interpretation of the splicing code

Figure 3a shows components of the code that have strongest regula-
tory evidence (also see Supplementary Information 7–9). The con-
sensus sequences for motif features are accompanied (in parentheses)
by names of potential binding proteins, but it should be kept in mind
that a different or unknown factor could bind instead. The direction
of a feature’s regulatory activity (increased inclusion or exclusion) is
indicated by colour (red or blue), and if a feature has an effect in both
directions (for example, because it works in combination with
another factor) both colours are shown. Short motifs are not
included, but are shown in Supplementary Fig. 9.

The complexity of the code is reflected by the number of tissue-
specific features per exon, the median of which varies from 12 (CNS)
to 19 (embryo) when excluding short motifs (Supplementary Fig. 10).
The code reveals tissue-specific combinations of features that are
potentially synergistic (the number of features must exceed a thresh-
old for regulation) or antagonistic (the direction of the regulatory
effects of two features is opposite). Other features are associated with
several tissues or are predicted to act in a tissue-independent manner.
Many aspects of the code compare well with known results, whereas
others are new, and others challenge known results, as explained later.

Position- and tissue-specific effects of elements that match the
known binding motifs for Fox, Nova, Mbnl, Cugbp, Tia1/Tiar, PTB,
nPTB and Qkl proteins are mostly consistent with previous results, but
interesting differences arise. The code predicts regulatory elements that
are deeper into introns than previously appreciated; PTB/nPTB-like
CU-rich elements were found to often reside 250 to 300 nucleotides
upstream of CNS-regulated exons, which is considerably farther than
previously reported10,14 (Fig. 4 and later). Mbnl sites were found mostly
in upstream introns of exons upregulated in CNS, but were also found
in the downstream introns of muscle-regulated exons. Consistent with
previous computational analyses17 and in vivo cross-linking and
immunoprecipitation (CLIP) assays18, in adult CNS tissues, Nova ele-
ments in upstream introns and alternative exons were associated with

exon exclusion, whereas elements in the 59 region of downstream
introns were primarily associated with exon inclusion. However, con-
trasting effects were observed in embryonic tissues (Fig. 3a), where
Nova elements in the 59 region of downstream introns were primarily
associated with exon exclusion. Although the position of the first AG
upstream of the alternative exon was previously associated with
alternative splicing40, our code associates it with tissue-specific (pre-
dominantly CNS) regulation. The motif ACUAAC was previously
associated with Qkl factors and reported as enriched downstream of
exons upregulated in muscle1,13. Our code identifies this feature, but
also predicts that its presence in the upstream intron regulates CNS-
specific splicing, which is consistent with studies implicating its trans-
factor as a regulator in human brain tissue41.

To determine interactions between regulatory features, we iden-
tified pairs of features that are unexpectedly frequent in the code and
generated feature interaction networks (Fig. 3b–d and Supplemen-
tary Information 8). Although some combinations arise primarily
from feature similarity (for example, Mbnl and Cugbp binding sites),
others correspond to bona fide mechanisms, some of which have
been verified. Figure 3b shows that nPTB, Mbnl and Cugbp binding
sites jointly occur in the 39 region of introns upstream of exons
upregulated in CNS tissues; later, this interaction is examined using
mutated minigene reporters. The combination of nPTB binding sites
in upstream introns, nPTB binding sites in downstream introns, and
short alternative exons shows the general utility of a previously pro-
posed mechanism in which PTB facilitates RNA looping resulting in
exon exclusion42. Our code indicates that this mechanism may be
disabled in CNS tissues, causing increased exon inclusion.

The code shows that combinations of several features act more fre-
quently than previously appreciated. In a few isolated cases, short exons,
weak splice sites and low ESE counts were previously found to result in
an ‘exclusion by default’ mechanism that can be reversed by other fea-
tures9. As seen in Fig. 3, short exons, weak 39 splice sites and low ESE
counts are frequently associated with CNS-specific exon inclusion. Over
six times more CNS-regulated exons have low values (lowest 20th per-
centile) for these features than non-CNS-regulated exons (P , 1 3 1028,
Binomial test). The code also reveals elements near flanking exons (for
example, ESEs and ESSs) that participate in regulation.

Transcript structure features were found to have strong effects in the
code, with interesting and potentially important biological implications.
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For example, the code predicts a class of exons that insert a PTC after
inclusion in transcripts and that are skipped in embryonic tissues but
included in adult tissues. Later, we describe experiments indicating that
these exons have an important role in the regulation of developmental
stage-specific gene expression.

Predicting regulatory feature maps

By flagging regulatory elements in RNA sequences surrounding an
alternative exon, the splicing code yields a visual feature map that
partially accounts for how the exon is regulated. Predicted feature
maps were initially evaluated by their overlap with 376 nucleotides of

RNA sequence analysed by mutagenesis in more than 60 splicing
reporter constructs from Agrn33, Src19,43, Casp2 (ref. 35) and the Slo
K1 STREX exon44. Our feature maps (Supplementary Figs 2–7 and
Supplementary Information 10) achieve an overlap of 90% with a
statistical significance of P , 0.002 (empirical, using maps from
unrelated exons). In contrast, feature maps constructed using only
known motifs achieve an overlap of 38% (P 5 0.004) and maps
derived solely from conservation information27 achieve poor specifi-
city (P 5 0.27).

Code-generated feature maps can be used to guide focused mech-
anistic studies. We examined exon 16 of the Daam1 gene, which our
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code ranked among the top 0.3% for CNS-specific increased inclu-
sion. It was recently shown39 that this exon is specifically included in
CNS tissues, but the precise locations of elements that mediate
neural-specific splicing of the exon were not determined. In our code,
most features were found within 300 nucleotides of upstream intron
sequence and the corresponding feature map (red blocks in Fig. 4a)
yields the following new predictions: an unusually high density of
regulatory elements (only 7.8% of other exons in our data set had as
high a density); novel motifs GGAGC (215–219 nucleotides) and
CUGGC (159–163 nucleotides); three well-separated regions (72–78,
106–124 and 267–280 nucleotides) that resemble nPTB binding ele-
ments, but do not score well using known motif definitions for this
protein19,42,45; and predicted inactivity of several features derived only
from conservation27 (137–142, 146–150 and 284–290 nucleotides).

We tested the code-generated feature map by performing extensive
mutagenesis using a Daam1 exon 16 precursor mRNA reporter39 that
faithfully recapitulates endogenous splicing patterns. Fifteen mutant
minigene reporters were constructed by replacing segments comprising
a total of 150 nucleotides of intron sequence with random sequences
pre-filtered to avoid introducing regulatory features (Fig. 4a, blue
blocks, Supplementary Information 12 and Supplementary Table 5).
Semi-quantitative RT–PCR assays were used to estimate the percentage
inclusion of exon 16 in transcripts from the wild-type and mutant
reporters, after their transfection into mouse neuroblastoma (N2A) cells
and non-neural fibroblast (NIH-3T3) and myoblast (C2C12) cell lines
(Fig. 4b and data not shown). Of the 15 mutants, 14 contain seg-
ments overlapping with predicted elements and indeed the percentage
inclusion in N2A cells for all of these mutants was significantly different
from wild type (P , 0.005, normal test, s.d. of 0.8% estimated from
three transfections; Supplementary Information 12). Mutant 7 was
designed to test a region predicted to have no regulatory role and,
indeed, its percentage inclusion is within 1 s.d. of the wild-type value.
Although the code could not confidently predict the direction of per-
centage inclusion change, it predicted that all mutants would have
higher exon inclusion in CNS tissues relative to other tissues, and this
prediction was confirmed for 14 out of 15 mutants by comparison of the

results from the N2A and NIH3T3 cell lines (Fig. 4b and Supplementary
Information 12).

Disruption of the two new motifs in mutants 3 and 6 resulted in
changes in inclusion levels (P , 1 3 102100, normal test). Mutants 1, 8
and 10 disrupted the three new CU-rich nPTB-like motifs and showed
increased exon inclusion (P , 1 3 102100). In vivo mouse whole brain
CLIP and high-throughput sequencing indicates that nPTB indeed
binds sequences overlapping these CU-rich elements (D. Licalatosi
and R. Darnell, personal communication). Mutants 2 and 5 disrupted
elements that correspond to previously defined nPTB motifs19,42,45. As
expected, these mutants showed increased exon inclusion
(P , 1 3 102100), but to a lesser extent than for the new CU-rich
elements. The code used conservation to predict and reject functional
elements. Mutant 10 disrupted an element that the code identified
using conservation plus CU-richness (72–78 nucleotides), and con-
firmed that this element is functional (see earlier). In contrast, mutant
7 disrupted a region that overlapped two conserved elements, but
which the code predicted would not be functional. Indeed, no signifi-
cant change in the percentage inclusion was observed.

According to the code, the number of nPTB motifs must exceed a
threshold before CNS regulation occurs. To investigate interactions
between nPTB motifs (disrupted by mutants 1, 2, 5, 8 and 10), in
Fig. 4c we plot the percentage inclusion for these mutants, a com-
bination mutant (segments 1, 2, 5 and 8), and wild type. Although the
presence of four nPTB motifs slightly suppresses inclusion compared
to only one, greater suppression occurs with five nPTB motifs, indi-
cating a synergistic interaction. The code also predicted that CUG-
rich Cugbp/Mbnl-like elements close to the nPTB element in mutant
10 would enhance inclusion. To explore combinations of these ele-
ments, we counted the number of nPTB-like CU elements and the
number of Cugbp/Mbnl-like CUG elements from 55 to 90 nucleo-
tides, and repeated this procedure for mutants 9, 10 and 11, a com-
bination of mutants 9 and 11 (labelled 9,11), and a mutant (labelled
9-10-11) that disrupted all elements in this region, including the
CUG motif between regions 10 and 11. Consistent with the code,
these elements were found to interact antagonistically (Fig. 4d).
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Figure 4 | Validation of a regulatory feature map. Regulatory elements in
the intron upstream of exon 16 in Daam1 predicted to be associated with
CNS-specific increased exon inclusion. a, Putative features (grey blocks),
along with code-selected features from the compendium and the unbiased
motif set (red blocks). Twelve segments were selected for testing (blue
blocks), including one not overlapping with predictions (7), and 15 minigene
reporters with single- or combined-segment substitutions were constructed

and transfected into neuroblastoma (N2A) and epithelial (NIH-3T3) cells.
b, RT–PCR results for the wild type and 15 mutants. c, Mutations of several
nPTB-like elements support code-predicted synergistic interactions.
d, Mutations of several CU and CUG elements between 55 and 90
nucleotides support code-predicted antagonistic interactions. Symbol size
indicates the percentage exon inclusion (0–83.7%).
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Alternative splicing-controlled gene expression

The code revealed a mechanism underlying the regulation of specific
genes during development, whereby a class of alternative exons that
introduce a PTC and activate nonsense-mediated mRNA decay
(NMD) are included in adult tissues to suppress mRNA expression,
but are skipped in embryonic tissues to activate mRNA expression
(Fig. 5a).

Supporting this predicted mechanism, microarray data indicated
that 30 out of 38 genes with exons in the above class have higher
(P , 0.05, t-test) mRNA expression levels in embryonic tissues com-
pared to adult tissues. Several high-scoring predictions were confirmed
by RT–PCR assays as having low or non-detectable levels of PTC-
containing isoforms in the profiled tissues, and relatively abundant
levels of the exon-skipped isoforms in embryonic tissues (Fig. 5b and
Supplementary Fig. 17a). To confirm the role of NMD in mRNA
regulation, a short interfering RNA (siRNA) pool capable of knocking
down the essential NMD factor Upf1 was transfected into N2A cells
and changes in splice isoform levels were monitored by RT–PCR
assays. Knockdown of Upf1 resulted in increased levels of the PTC-
containing isoforms in five out of six examples with detectable express-
ion of these isoforms in N2A cells (Fig. 5c and Supplementary Fig. 17b).

Genes containing the developmentally regulated PTC-introducing
exons identified by the splicing code include those with previously
described roles in development and disease. Exportin 4 (Xpo4, also
known as Exp4) is a particularly interesting example (Fig. 5b, c). It is a
nuclear export receptor for the translation initiation factor eIF5A46,
and a nuclear import receptor for SRY-related HMG-box (Sox)
family transcription factors47, which have key roles in regulating
embryonic development, and are required for the maintenance of
stem cell pluripotency48. Notably, eIF5A is amplified in certain cancers
and a recent oncogenomics-based RNA interference screen further
identified human XPO4 as being required for the proliferation of
XPO4-deficient tumours49. These findings support the conclusion
that Xpo4 expression must be tightly controlled such that it is active
during embryogenesis but downregulated in adult tissues, to avoid
possible deleterious consequences including oncogenesis.

Discussion

The method we used to infer a splicing code produced a testable map for
how RNA features work together to regulate tissue-dependent alterna-
tive splicing. The utility of the code is supported by evaluation of its
ability to predict splicing patterns for previously unanalysed exons in
major tissue types, including CNS, muscle, embryo and digestive tissues;
recapitulation of results from previous studies of muscle- and brain-
dependent splicing including targets of Nova, Fox and PTB/nPTB;
evaluation of RNA segments predicted to have regulatory function; an
automatically generated, interpretable, graphical depiction of the code;
and discovery of a class of exons whose alternative splicing regulates gene
expression differently in adult and embryonic tissues, by introducing
PTCs. Unlike high-throughput sequencing and microarray profiling,
our code can successfully predict tissue-regulation of exons indepen-
dently of transcript expression levels (Supplementary Information 11).

To facilitate future research, we developed a web tool (accessible at
http://genes.toronto.edu/wasp), which can be used to explore new
regulatory elements and how these elements work in combination to
shape the transcriptional landscape. The tool can scan previously
uncharacterized exons, predict tissue-dependent splicing patterns,
and produce downloadable exploratory feature maps linked to the
UCSC genome browser. Users can also download data sets compris-
ing the feature vectors and prediction targets described earlier. As an
example of the tool’s utility, we wanted to explore exons that might
be involved in human neurological disorders, so we used the code to
predict previously uncharacterized CNS-regulated exons in widely
expressed genes associated with Parkinson’s disease, Alzheimer’s
disease, and several other disorders (Supplementary Information
11, Supplementary Table 4 and Supplementary Fig. 14). In many
cases, the newly identified CNS-regulated exons are predicted to
affect critical protein domains and one of the exons overlaps patient
genomic deletions linked to neurological disease.

A unique aspect of our approach is that it searches for a regulatory
code that maximizes a quantifiable measure of code quality, so as to
jointly account for many features and produce a predictive splicing
code. Interesting future directions include incorporating in vivo CLIP
data18, high-throughput in vitro protein-RNA binding data50, further
splicing profiling (for example, RNA-Seq) data, and different learn-
ing algorithms.

It is apparent from examining the splicing code deciphered in the
present study that large numbers of sequence features are generally
required to achieve tissue-regulated splicing. We anticipate that the
splicing code described here will be useful in future studies directed at
understanding the mechanisms by which these elements and trans-
acting factors combine to regulate tissue-dependent splicing regu-
lation, and how these mechanisms go awry in human diseases.

METHODS SUMMARY

Code assembly: A splicing code is inferred such that the prediction p(ci,ri), based

on the RNA feature vector ri and tissue type ci (where i 5 1,…,14,460 indexes

exon-tissue type data points), is as close to the measured splicing pattern qi

as possible, for all data points. To achieve this, we introduce an information

theoretic31 measure of ‘code quality’:

Code quality~
X

i [ data points

X
s [finc, exc, nc)

qs
i log

ps(ci ,ri)

�qqs

� �

Where �qqs is the average probability of increased inclusion (s 5 inc), increased

exclusion (s 5 exc) or no change (s 5 nc), taken over all exons and tissue types.

The code quality can also be viewed as the data set log-likelihood, up to an

additive constant. In Fig. 2a, thresholds qinc $ 0.99 and qexc $ 0.99 were applied

to obtain 28,920 binary indicators (3.4% positive) and matching code prediction

probabilities were obtained using fivefold cross validation. In Fig. 2b, c, cases in

which the microarray- or RT–PCR-measured tissue-difference in the percentage

exon inclusion exceeded one s.d. in expected error11 (5%) were selected, and

microarray cases were further screened so that transcripts in both tissues were

among the top 20% in expression. For every test exon and pair of tissues c and c9,

the difference in predictions for the two tissues, Dp 5 p(c,r) 2 p(c9,r), was com-

puted and high confidence cases (jDpj. 0.5) were used for testing.
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Figure 5 | The code predicts a mechanism for developmental regulation.
a, The code identified a class of PTC-introducing exons predicted to activate
NMD when included in adult tissues, but to allow mRNA expression when
skipped in embryonic tissues. b, RT–PCR data monitoring splicing and
mRNA expression levels of transcripts from Xpo4, which contains a code-
predicted PTC-introducing exon, in four adult tissues (cortex, cerebellum,
kidney and liver) and three embryonic samples (embryonic day (E)9.5, E12.5
and E15). c, RT–PCR data monitoring mRNA levels of the NMD factor Upf1
and the PTC-containing Xpo4 isoform in neuroblastoma (N2A) cells
transfected with control siRNAs or Upf1 siRNAs. The Xpo4 PTC-containing
isoform was selectively amplified using an exon-specific primer. Gapdh
mRNA levels represent a loading control.
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Computational techniques, splicing reporter constructs, cell transfections and
RT–PCR assays are described in Supplementary Information.
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