CompSci 102 Discrete Math for Computer Science

<i>p</i>	q	$p \land q$	
F	F	F	January 17, 2012 Prof. Rodger
F	Т	F	
Т	F	F	
Т	Т	Т	

ī.

Announcements

- Read for next time Chap. 1.1-1.3
- Recitations start Friday
- Added everyone to Piazza
- ACM Distinguished Speaker tonight
 - Dilma Da Silva, IBM
 - System Software for Cloud Computing
 - 6pm tonight in LSRC D106 with Pizza!

Logic

- Rules of logic specify meaning of mathematical statements
- How do you understand:
- $\forall n > 0 \quad \sum_{i=1}^{n} i = \frac{n(n+1)}{2}$
- Applications in CS
 - Designing computers
 - Designing programming languages
 - Correctness of programs
 - Many areas such as artificial intelligence

Proposition

- A **proposition** is a sentence that declares a fact that is true or false
- A **theorem** is a proposition that is guaranteed by a proof

Examples of Propositions

- Which are propositions? What is their value?
 - 1. Duke won the NCAA men's basketball title in 2010.
 - 2. 3x > 2
 - 3. Clean up after yourself.
 - 4. Durham is the capital of NC.
 - 5. Pepsi was invented in New Bern NC in 1898.
 - 6. 8 + 3 = 11

Operators / Connectives

- An *operator* or *connective* combines one or more *operand* expressions into a larger expression. (*E.g.*, "+" in numeric exprs.)
- Unary operators take 1 operand (e.g., -3); binary operators take 2 operands (eg 3×4).
- Propositional or Boolean operators operate on propositions (or their truth values) instead of on numbers.

A Proof Example

- **Theorem:** (Pythagorean Theorem (ca. 569-475 B.C.) of Euclidean geometry) For any real numbers a, b, and c, if a and b are the base-length and height of a right triangle, and c is the length of its hypotenuse, then $a^2 + b^2 = c^2$.
- Proof?

CompSci 102

© Michael Frank

1.7

The Negation Operator

The unary negation operator " \neg " (NOT) transforms a prop. into its logical negation.

E.g. If p = "I have brown hair."

then $\neg p =$ "I do **not** have brown hair."

1.9

6

Conjunction Truth Table

Operand columns A conjunction $p \wedge q$ q $p_1 \wedge p_2 \wedge \ldots \wedge p_n$ F F F of *n* propositions will have how many F Т F rows in its truth table? Т F F • Note: \neg and \land Т Т Т operations together are suffi-cient to express any Boolean truth table! CompSci 102 Modified from © Michael Frank

Exclusive-Or Truth Table

- Note that $p \oplus q$ means that p is true, or q is true, but not both!
- This operation is called *exclusive* or, because it excludes the possibility that both p and q are true.
- "¬" and "⊕" together are **not** universal.

Disjunction Truth Table

- Note that $p \lor q$ means that p is true, or q is true, or both are true!
- F • So, this operation is also called inclusive or. Т because it **includes** the possibility that both p and q are true.
- " \neg " and " \lor " together are also universal.

```
CompSci 102
```

```
© Michael Frank
```

1.15

q

F

Т

F

Т

q

F

Т

F

Т

Т

F

Т

The

only

False

case!

F

F

Т

Т

F

 $\mathcal{D} \vee \mathcal{A}$

Note

difference

from AND

F

Т

T

Τ

Implication Truth Table

- $p \rightarrow q$ is false <u>only</u> when p is true but q is **not** true.
- $p \rightarrow q$ does **not** say that p causes q!
- $p \rightarrow q$ does **not** require that p or q are ever true!
- E.g. "(1=0) \rightarrow pigs can fly" is TRUE!

Note

difference from OR.

1.13

 $p \oplus a$

F

Т

Т

F

q

F

F

Т

F

F

Т

Т

English Phrases Meaning $p \rightarrow q$

• "p implies q"

- "if *p*, then *q*"
- "if *p*, *q*"
- "when *p*, *q*"
- "whenever p, q"
- "q if p"

CompSci 102

- "q when p"
- "q whenever p"

- "*p* only if *q*"
- "p is sufficient for q"
- "q is necessary for p"
- "q follows from p"
- "q is implied by p"

We will see some equivalent logic expressions later.

q

F

Т

F

Т

р

F

F

Т

Т

Converse, Inverse, Contrapositive

Some terminology, for an implication $p \rightarrow q$:

- Its *converse* is: $q \rightarrow p$.
- Its *inverse* is: $\neg p \rightarrow \neg q$.
- Its *contrapositive*: $\neg q \rightarrow \neg p$.
- One of these three has the *same meaning* (same truth table) as *p* → *q*. Can you figure out which?

© Michael Frank

1.27

Biconditional Truth Table

- $p \leftrightarrow q$ means that p and qhave the **same** truth value.
- Note this truth table is the exact **opposite** of ⊕'s!

Thus, $p \leftrightarrow q$ means $\neg (p \oplus q)$

p ↔ *q* does **not** imply that *p* and *q* are true, or that either of them causes the other, or that they have a common cause,

© Michael Frank

Boolean Operations Summary

• We have seen 1 unary operator and 5 binary operators. Their truth tables are below.

1.26

 $p \leftrightarrow q$

Т

F

F

Т