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Announcements 
• Read for next time Chap. 1.4-1.6 
• Recitation 1 is tomorrow 
• Homework will be posted by Friday 

 
• Today more logic 

 



Classwork problem from last time 
Each inhabitant of a remote village always tells the 
truth or always lies. A villager will only give "yes" 
or "no" response to a question a tourist asks.  
Suppose you are a tourist visiting this area and come 
to a fork in the road. One branch leads to the ruins 
you want to visit; the other leads deep into the 
jungle.  
A villager is standing at the fork in the road. What 
one question can you ask the villager to determine 
which branch to take?  
 



Precedence of Logical operators 

Operator Precedence 
       1 
       2 
       3 
       4 
       5 

Example:  𝑝 ∨ ¬  𝑞 ∧  𝑟 → 𝑠 ∨ 𝑞 



Precedence of Logical operators 

Operator Precedence 
       1 
       2 
       3 
       4 
       5 

Example:  𝑝 ∨ ¬  𝑞 ∧  𝑟 → 𝑠 ∨ 𝑞 
(𝑝 ∨ ¬  𝑞 ∧  𝑟 ) → (𝑠 ∨ 𝑞) 



Translating English Sentences 

• Steps to convert an English sentence to a 
statement in propositional logic 
– Identify atomic propositions and represent using 

propositional variables. 
– Determine appropriate logical connectives 

• “If I go to Harry’s or to the country, I will not 
go shopping.” 
– p: I go to Harry’s 
– q: I go to the country. 
– r:  I will go shopping. 

 
 

If p or q then not r. 
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Example 
  Problem: Translate the following sentence 

into propositional logic: 
 “You can access the Internet from campus 

only if you are a computer science major or 
you are not a freshman.” 

  One Solution: Let a, c, and f  represent 
respectively “You can access the internet 
from campus,” “You are a computer science 
major,” and “You are a freshman.” 

                  a→ (c ∨ ¬ f ) 
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System Specifications 
• System and Software engineers take 

requirements in English and express them in a 
precise specification language based on logic. 

   Example: Express in propositional logic: 
  “The automated reply cannot be sent when the 

file system is full” 
    Solution: One possible solution: Let p denote 

“The automated reply can be sent” and q 
denote “The file system is full.”  

                              q→ ¬ p 
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Consistent System Specifications 
   Definition: A list of propositions is consistent 

if it is possible to assign truth values to the 
proposition variables so that each proposition 
is true. 

   Exercise: Are these specifications consistent? 
– “The diagnostic message is  stored in the buffer or it is retransmitted.” 
– “The diagnostic message is not stored in the buffer.” 
– “If the diagnostic message is stored in the buffer, then it is retransmitted.” 

    Solution: Let p denote “The diagnostic message is not stored in the buffer.” 
Let q denote “The diagnostic message is retransmitted” The specification 
can be written as: p ∨ q,  p→ q,  ¬p.   When p is false and q is true all three 
statements are true. So the specification is consistent. 

– What if “The diagnostic message is not retransmitted is added.”  
     Solution: Now we are adding ¬q and there is no satisfying    assignment. So 

the specification is not consistent.  
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Logic Puzzles 

• An island has two kinds of inhabitants, knights, 
who always tell the truth, and knaves, who always 
lie.  

• You go to the island and meet A and B.  
– A says “The two of us are both knights” 
– B says “A is a Knave.” 

    Example: What are the types of A and B? 
 

Raymond 
Smullyan 
(Born 
1919) 



Tautologies, Contradictions, and 
Contingencies 

• A  tautology is a proposition which is always true. 
– Example: p ∨¬p  

• A  contradiction is a proposition which is always 
false. 
– Example: p ∧¬p     

• A  contingency is a proposition which is neither a 
tautology nor a contradiction, such as  p 

                    P ¬p p ∨¬p  p ∧¬p  
T F T F 
F T T F 



Logically Equivalent 
• Two compound propositions p and q are logically 

equivalent if  p↔q  is a tautology. 
• We write this as p⇔q   or as p≡q where p and q are 

compound propositions. 
• Two compound propositions p and q are equivalent if 

and only if the columns in a truth table giving their truth 
values agree. 

• This truth table show ¬p ∨ q  is equivalent to p → q. 
 
 

p q  ¬p ¬p ∨ q p→ q 
T T F T T 
T F F F F 
F T T T T 
F F T T T 



De Morgan’s Laws 

p q ¬p ¬q (p∨q) ¬(p∨q) ¬p∧¬q 
T T F F T F F 

T F F T T F F 

F T T F T F F 

F F T T F T T 

This truth table shows that De Morgan’s Second Law 
holds. 

Augustus De 
Morgan 1806-

1871 



Key Logical Equivalences 

• Identity Laws:                                   
 

• Domination Laws:                            
 

• Idempotent laws:                                 
 
• Double Negation Law: 
 
• Negation Laws:                                    

 
 

 
 



Key Logical Equivalences (cont) 

• Commutative Laws:                              , 
 
• Associative Laws: 
 
• Distributive Laws: 

 
 

• Absorption Laws: 
 
 
 

 



More Logical Equivalences 



Constructing New Logical 
Equivalences 

• We can show that two expressions are logically 
equivalent by developing a series of logically 
equivalent statements. 

• To prove that                 we produce a series of 
equivalences beginning with A and ending with B. 
 
 
 

• Keep in mind that whenever a proposition 
(represented by a propositional variable) occurs in 
the equivalences listed earlier, it may be replaced by 
an arbitrarily complex compound proposition. 



Equivalence Proofs 
Example: Show that                                
            is logically equivalent to  
 



Equivalence Proofs 
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            is logically equivalent to  
Solution: 
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Example: Show that                                
            is a tautology.  
Solution: 
 



Propositional Satisfiability 

• A compound proposition is satisfiable if 
there is an assignment of truth values to its 
variables that make it true. When no such 
assignments exist, the compound 
proposition is unsatisfiable. 

• A compound proposition is unsatisfiable if 
and only if its negation is a tautology. 



Questions on Propositional 
Satisfiability 

   Example: Determine the satisfiability of the following 
compound propositions: 

 
 

   Solution: Satisfiable. Assign T to p, q, and r. 
 

 
   Solution: Satisfiable. Assign T to p and F  to q. 

 
 
   Solution:  Not satisfiable. Check each possible 

assignment of truth values to the propositional variables 
and none will make the proposition true. 

 
 

 



Questions on Propositional 
Satisfiability 

   Example: Determine the satisfiability of the following 
compound propositions: 

 
 

   Solution: Satisfiable. Assign T to p, q, and r. 
 

 
   Solution: Satisfiable. Assign T to p and F  to q. 

 
 
   Solution:  Not satisfiable. Check each possible 

assignment of truth values to the propositional variables 
and none will make the proposition true. 

 
 

 



Satisfiability problem 

• First CS problem to be shown NP-Complete 
– Problems that take too much time to solve…. 
– Cook 1971 
– Math professor at UC Berkeley – now U Toronto 

• Start of the area: Complexity theory 
• Many problems now shown NP-Complete 



Notation 

Needed for the next 
example. 



Sudoku 
• A  Sudoku puzzle is represented by a 9×9 

grid made up of nine 3×3 subgrids, known 
as blocks. Some of the 81 cells of the 
puzzle are assigned one of the numbers 1,2, 
…, 9. 

• The puzzle is solved by assigning numbers 
to each blank cell so that every row, column 
and block contains each of the nine possible 
numbers. 

• Example 



Encoding as a Satisfiability Problem 

• Let p(i,j,n) denote the proposition that is 
true when the number n is in the cell in the 
ith row and the jth column. 

• There are 9×9 × 9 = 729 such propositions. 
• In the sample puzzle p(5,1,6) is true, but 

p(5,j,6) is false for j = 2,3,…9 



Encoding (cont) 
• For each cell with a given value, assert 

p(d,j,n), when the cell in row i and column j 
has the given value. 

• Assert that every row contains every 
number. 

 
• Assert that every column contains every 

number. 
 



Encoding (cont) 
• Assert that each of the 3 x 3 blocks contain 

every number. 
 

• Assert that no cell contains more than one  
number. Take the conjunction over all 
values of n, n’, i, and j, where each variable 
ranges from 1 to 9 and             , 

    of 
 



Solving Satisfiability Problems 
• To solve a  Sudoku puzzle, we need to find an 

assignment of truth values to the 729 variables of the 
form  p(i,j,n) that makes the conjunction of the 
assertions true. Those variables that are assigned T yield 
a solution to the puzzle. 

• A truth table can always be used to determine the 
satisfiability of a compound proposition. But this is too 
complex even for modern computers for large problems.  

• There has been much work on developing efficient 
methods for solving satisfiability problems as many 
practical problems can be translated into satisfiability 
problems.  



Propositional Logic Not Enough 

• If we have:  
“All men are mortal.” 
“Socrates is a man.” 

• Does it follow that “Socrates is mortal?” 
• Can’t  be represented in propositional logic. 

Need a language that talks about objects, 
their properties, and their relations.  

• Later we’ll see how to draw inferences.  



Introducing Predicate Logic 
• Predicate logic uses the following new 

features: 
– Variables:   x, y, z 
– Predicates:   P(x), M(x) 
– Quantifiers (to be covered in a few slides): 

• Propositional functions are a generalization of 
propositions.  
– They contain variables and a predicate, e.g., P(x) 
– Variables can be replaced by elements from their 

domain. 
 



Propositional Functions 
• Propositional functions become propositions (and have 

truth values) when their variables are each replaced by a 
value from the domain (or  bound by a quantifier, as we 
will see later). 

• The statement P(x) is said to be the value of the 
propositional function P at x.  

• For example, let P(x) denote  “x > 0” and the domain be 
the integers. Then: 
P(-3)   is false. 
P(0)   is false. 
P(3)  is true.  

• Often the domain is denoted by U. So in this example U 
is the integers. 
 



Examples of Propositional Functions 
• Let “x + y = z” be denoted by  R(x, y, z) and U (for all three 

variables) be the integers. Find these truth values:  
R(2,-1,5) 

Solution:  F 
R(3,4,7) 

Solution: T 
R(x, 3, z) 

Solution: Not a Proposition 
• Now let  “x - y = z” be denoted by Q(x, y, z), with U as the integers. 

Find these truth values: 
Q(2,-1,3) 

 Solution:  T 
Q(3,4,7) 

 Solution: F 
 Q(x, 3, z) 

 Solution:  Not a Proposition 
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Compound Expressions 
• Connectives from propositional logic carry over to 

predicate logic.  
• If P(x) denotes  “x > 0,” find these truth values: 

P(3) ∨ P(-1)       Solution: T 
P(3) ∧ P(-1)      Solution: F 
P(3) → P(-1)     Solution: F 
P(3) → P(-1)     Solution: T 

• Expressions with variables are not propositions and 
therefore do not have truth values.  For example, 
P(3) ∧ P(y)       
P(x) → P(y)      

• When used with quantifiers (to be introduced next), 
these expressions (propositional functions) become 
propositions. 

 
 

T 
F 
F 
T 
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Quantifiers 
• We need quantifiers to express the meaning of English 

words including all and some: 
– “All men are Mortal.” 
– “Some cats do not have fur.” 

• The two most important quantifiers are: 
– Universal Quantifier, “For all,”   symbol: ∀ 
– Existential Quantifier, “There exists,”  symbol: ∃ 

• We write  as in ∀x P(x) and ∃x P(x). 
• ∀x P(x) asserts P(x) is true for every x in the domain. 
• ∃x P(x) asserts P(x) is true for some x in the domain. 
• The quantifiers are said to bind the variable x in these 

expressions.  
 
 

Charles Peirce (1839-1914) 



Universal Quantifier 
– ∀x P(x)  is read as “For all x, P(x)” or “For every 

x, P(x)” 
Examples: 

1)  If P(x) denotes  “x > 0” and U is the integers, then 
∀x P(x) is false. 

2) If P(x) denotes  “x > 0” and U  is the positive 
integers, then     ∀x P(x) is true. 

3) If P(x) denotes  “x is even” and U  is the integers,  
then ∀ x P(x) is false. 
 
 
 



Existential Quantifier 
• ∃x P(x) is read as “For some x, P(x)”,  or as 

“There is an x such that P(x),”  or “For at least one 
x, P(x).”  
Examples: 

1.  If P(x) denotes  “x > 0” and U  is the 
integers, then ∃x P(x) is true. It is also true 
if U is the positive integers. 

2. If P(x) denotes  “x < 0” and U  is the 
positive integers,  then     ∃x P(x) is false. 

3. If P(x) denotes  “x is even” and U  is the 
integers,  then     ∃x P(x) is true. 
 



Uniqueness Quantifier  
• ∃!x P(x) means that P(x) is true for one and only 

one x in the universe of discourse. 
• This is commonly expressed in English in the 

following equivalent ways: 
– “There is a unique x such that P(x).”  
– “There is one and only one x such that P(x)” 

• Examples: 
1. If P(x) denotes  “x + 1 = 0”  and U is the integers, then 
∃!x P(x) is true.  

2. But if P(x) denotes  “x > 0,”  then ∃!x P(x) is false. 
• The uniqueness quantifier is not really needed as the 

restriction that there is a unique x such that P(x) can 
be expressed as:   

                               ∃x (P(x) ∧∀y (P(y) → y =x)) 



Thinking about Quantifiers 
• When the  domain of discourse is finite, we can think of 

quantification as looping through the elements of the 
domain. 

• To evaluate ∀x P(x) loop through all x in the domain.  
– If at every step P(x) is true, then ∀x P(x) is true.  
– If at a step P(x) is false, then ∀x P(x) is false and the loop 

terminates.  
• To evaluate ∃x P(x) loop through all x in the domain.  

– If  at some step, P(x) is true, then ∃x P(x) is true and the loop 
terminates.  

– If the loop ends without finding an x for which P(x) is true, 
then ∃x P(x) is false. 

• Even if the domains are infinite, we can still think of the 
quantifiers this fashion, but the loops will not terminate 
in some cases. 
 
 

 



Properties of Quantifiers 
• The truth value of ∃x P(x)  and ∀ x P(x)  depend 

on both the propositional function P(x) and on  
the domain U.  

• Examples: 
1. If U is the  positive integers and P(x) is the statement           

“x < 2”, then ∃x P(x)   is true, but ∀ x P(x)  is false.  
2. If U is the negative integers and P(x) is the statement           

“x < 2”, then both ∃x P(x)  and  ∀ x P(x)  are true.  
3. If U consists of 3, 4, and 5,  and P(x) is the statement           

“x > 2”, then  both ∃x P(x)   and ∀ x P(x)  are true. 
But if P(x) is the statement “x < 2”, then  both ∃x P(x)   
and             ∀ x P(x)  are false.  

 
 



Precedence of Quantifiers 
• The quantifiers ∀ and  ∃ have higher 

precedence than all the logical operators. 
• For example, ∀x P(x) ∨ Q(x)  means (∀x 

P(x))∨ Q(x)   
• ∀x (P(x) ∨ Q(x)) means something 

different. 
• Unfortunately, often people write ∀x P(x) 

∨ Q(x)  when they mean ∀ x (P(x) ∨ 
Q(x)).  



Translating from English to Logic 
Example 1:  Translate the following sentence into 

predicate logic: “Every student in this class has 
taken a course in Java.” 

Solution: 
  First decide on the domain U.  

Solution 1: If U is all students in this class, define a 
propositional function J(x) denoting “x has taken a 
course in Java” and translate as ∀x J(x).  

Solution 2: But if U is all people, also define a 
propositional  function S(x) denoting “x is a student in 
this class” and translate as     ∀x (S(x)→ J(x)).  

             ∀x (S(x) ∧ J(x))  is not correct.  What does it mean? 
 



Translating from English to Logic 

Example 2: Translate the following sentence into 
predicate logic: “Some student in this class has 
taken a course in Java.”  

Solution: 
First decide on the domain U.  

Solution 1: If U is all students in this class, translate as  
                           ∃x J(x) 
Solution 1: But if U is all people, then translate as                 
∃x (S(x) ∧ J(x))  

        ∃x (S(x)→ J(x)) is not correct. What does it mean? 
 



Returning to the Socrates Example  

• Introduce the  propositional functions Man(x) 
denoting “x is a man” and  Mortal(x) denoting “x is 
mortal.”  Specify the  domain as all people. 

• The two premises are: 
 

• The conclusion is: 
 

• Later we will show how to prove that the conclusion 
follows from the premises. 
 



Equivalences in Predicate Logic 
• Statements involving predicates and 

quantifiers are logically equivalent if and only 
if they have the same truth value  
– for every predicate substituted into these statements 

and  
– for every domain of discourse used for the 

variables in the expressions.  
• The notation S ≡T  indicates that S and T  are 

logically equivalent.  
• Example:  ∀x ¬¬S(x) ≡ ∀x S(x) 



Thinking about Quantifiers as 
Conjunctions and Disjunctions 

• If the domain is finite, a universally quantified proposition is 
equivalent to a conjunction of propositions without quantifiers 
and an existentially quantified proposition is equivalent to  a 
disjunction of propositions without quantifiers.  

• If U consists of the integers 1,2, and 3: 
 
 
 
 
 
• Even if the domains are infinite, you can still think of the 

quantifiers in this fashion, but the equivalent expressions 
without quantifiers will be infinitely long. 
 
 

 



Negating Quantified Expressions 

• Consider ∀x J(x) 
“Every student in your class has taken a course in Java.” 
 Here J(x)  is “x has taken a course in calculus” and  
 the domain is students in your class.  

• Negating the original statement gives “It is not the 
case that every student in your class has taken Java.” 
This implies that “There is a student in your class 
who has not taken calculus.” 

     Symbolically  ¬∀x J(x)  and ∃x ¬J(x) are 
equivalent 

 



Negating Quantified Expressions 
(continued) 

• Now Consider ∃ x J(x) 
“There is a student in this class who has taken a 

course in Java.” 
Where J(x)  is “x has taken a course in Java.” 

• Negating the original statement gives “It is not 
the case that there is a student in this class who 
has taken Java.” This implies that “Every 
student in this class has not taken Java” 

     Symbolically  ¬∃ x J(x)  and ∀ x ¬J(x) are 
equivalent 



De Morgan’s Laws for Quantifiers 
• The rules for negating quantifiers are: 

 
 
 
 

• The reasoning in the table shows that: 
 
 
 

• These are important. You will use these.  



Some Fun with Translating from 
English into Logical Expressions 

• U = {fleegles, snurds, thingamabobs} 
F(x): x is a fleegle 
S(x): x is a snurd 
T(x): x is a thingamabob 

   Translate “Everything is a fleegle” 
 
    Solution: ∀x F(x) 

 



Translation (cont) 
• U = {fleegles, snurds, thingamabobs} 

F(x): x is a fleegle 
S(x): x is a snurd 
T(x): x is a thingamabob 

   “Nothing is a snurd.” 
 

     Solution: ¬∃x S(x)   What is this 
equivalent to? 

     Solution:   ∀x ¬ S(x)  



Translation (cont) 

• U = {fleegles, snurds, thingamabobs} 
F(x): x is a fleegle 
S(x): x is a snurd 
T(x): x is a thingamabob 

  “All fleegles are snurds.” 
 

   Solution: ∀x (F(x)→ S(x)) 
 
 
 



Translation (cont) 

• U = {fleegles, snurds, thingamabobs} 
F(x): x is a fleegle 
S(x): x is a snurd 
T(x): x is a thingamabob 

  “Some fleegles are thingamabobs.” 
 

   Solution: ∃x (F(x) ∧ T(x)) 
 



Translation (cont) 
• U = {fleegles, snurds, thingamabobs} 

F(x): x is a fleegle 
S(x): x is a snurd 
T(x): x is a thingamabob 

   “No snurd is a thingamabob.” 
 

     Solution: ¬∃x (S(x) ∧ T(x))  What is this 
equivalent to? 

     Solution: ∀x (¬S(x) ∨ ¬T(x)) 



Translation (cont) 

• U = {fleegles, snurds, thingamabobs} 
F(x): x is a fleegle 
S(x): x is a snurd 
T(x): x is a thingamabob 

  “If any fleegle is a snurd then it is also a 
thingamabob.” 
 

     Solution: ∀x ((F(x) ∧ S(x))→ T(x)) 
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