
CompSci 102
Discrete Math for Computer Science

January 19, 2012

Prof. Rodger

Most Slides are modified from Rosen

Announcements
• Read for next time Chap. 1.4-1.6
• Recitation 1 is tomorrow
• Homework will be posted by Friday

• Today more logic

Classwork problem from last time
Each inhabitant of a remote village always tells the
truth or always lies. A villager will only give "yes"
or "no" response to a question a tourist asks.
Suppose you are a tourist visiting this area and come
to a fork in the road. One branch leads to the ruins
you want to visit; the other leads deep into the
jungle.
A villager is standing at the fork in the road. What
one question can you ask the villager to determine
which branch to take?

Precedence of Logical operators

Operator Precedence
 1
 2
 3
 4
 5

Example: 𝑝 ∨ ¬ 𝑞 ∧ 𝑟 → 𝑠 ∨ 𝑞

Precedence of Logical operators

Operator Precedence
 1
 2
 3
 4
 5

Example: 𝑝 ∨ ¬ 𝑞 ∧ 𝑟 → 𝑠 ∨ 𝑞
(𝑝 ∨ ¬ 𝑞 ∧ 𝑟) → (𝑠 ∨ 𝑞)

Translating English Sentences

• Steps to convert an English sentence to a
statement in propositional logic
– Identify atomic propositions and represent using

propositional variables.
– Determine appropriate logical connectives

• “If I go to Harry’s or to the country, I will not
go shopping.”
– p: I go to Harry’s
– q: I go to the country.
– r: I will go shopping.

If p or q then not r.

Translating English Sentences

• Steps to convert an English sentence to a
statement in propositional logic
– Identify atomic propositions and represent using

propositional variables.
– Determine appropriate logical connectives

• “If I go to Harry’s or to the country, I will not
go shopping.”
– p: I go to Harry’s
– q: I go to the country.
– r: I will go shopping.

If p or q then not r.

Example
 Problem: Translate the following sentence

into propositional logic:
 “You can access the Internet from campus

only if you are a computer science major or
you are not a freshman.”

 One Solution: Let a, c, and f represent
respectively “You can access the internet
from campus,” “You are a computer science
major,” and “You are a freshman.”

 a→ (c ∨ ¬ f)

Example
 Problem: Translate the following sentence

into propositional logic:
 “You can access the Internet from campus

only if you are a computer science major or
you are not a freshman.”

 One Solution: Let a, c, and f represent
respectively “You can access the internet
from campus,” “You are a computer science
major,” and “You are a freshman.”

 a→ (c ∨ ¬ f)

System Specifications
• System and Software engineers take

requirements in English and express them in a
precise specification language based on logic.

 Example: Express in propositional logic:
 “The automated reply cannot be sent when the

file system is full”
 Solution: One possible solution: Let p denote

“The automated reply can be sent” and q
denote “The file system is full.”

 q→ ¬ p

System Specifications
• System and Software engineers take

requirements in English and express them in a
precise specification language based on logic.

 Example: Express in propositional logic:
 “The automated reply cannot be sent when the

file system is full”
 Solution: One possible solution: Let p denote

“The automated reply can be sent” and q
denote “The file system is full.”

 q→ ¬ p

Consistent System Specifications
 Definition: A list of propositions is consistent

if it is possible to assign truth values to the
proposition variables so that each proposition
is true.

 Exercise: Are these specifications consistent?
– “The diagnostic message is stored in the buffer or it is retransmitted.”
– “The diagnostic message is not stored in the buffer.”
– “If the diagnostic message is stored in the buffer, then it is retransmitted.”

 Solution: Let p denote “The diagnostic message is not stored in the buffer.”
Let q denote “The diagnostic message is retransmitted” The specification
can be written as: p ∨ q, p→ q, ¬p. When p is false and q is true all three
statements are true. So the specification is consistent.

– What if “The diagnostic message is not retransmitted is added.”
 Solution: Now we are adding ¬q and there is no satisfying assignment. So

the specification is not consistent.

Consistent System Specifications
 Definition: A list of propositions is consistent

if it is possible to assign truth values to the
proposition variables so that each proposition
is true.

 Exercise: Are these specifications consistent?
– “The diagnostic message is stored in the buffer or it is retransmitted.”
– “The diagnostic message is not stored in the buffer.”
– “If the diagnostic message is stored in the buffer, then it is retransmitted.”

 Solution: Let p denote “The diagnostic message is not stored in the buffer.”
Let q denote “The diagnostic message is retransmitted” The specification
can be written as: p ∨ q, p→ q, ¬p. When p is false and q is true all three
statements are true. So the specification is consistent.

– What if “The diagnostic message is not retransmitted is added.”
 Solution: Now we are adding ¬q and there is no satisfying assignment. So

the specification is not consistent.

Logic Puzzles

• An island has two kinds of inhabitants, knights,
who always tell the truth, and knaves, who always
lie.

• You go to the island and meet A and B.
– A says “The two of us are both knights”
– B says “A is a Knave.”

 Example: What are the types of A and B?

Raymond
Smullyan
(Born
1919)

Tautologies, Contradictions, and
Contingencies

• A tautology is a proposition which is always true.
– Example: p ∨¬p

• A contradiction is a proposition which is always
false.
– Example: p ∧¬p

• A contingency is a proposition which is neither a
tautology nor a contradiction, such as p

 P ¬p p ∨¬p p ∧¬p
T F T F
F T T F

Logically Equivalent
• Two compound propositions p and q are logically

equivalent if p↔q is a tautology.
• We write this as p⇔q or as p≡q where p and q are

compound propositions.
• Two compound propositions p and q are equivalent if

and only if the columns in a truth table giving their truth
values agree.

• This truth table show ¬p ∨ q is equivalent to p → q.

p q ¬p ¬p ∨ q p→ q
T T F T T
T F F F F
F T T T T
F F T T T

De Morgan’s Laws

p q ¬p ¬q (p∨q) ¬(p∨q) ¬p∧¬q
T T F F T F F

T F F T T F F

F T T F T F F

F F T T F T T

This truth table shows that De Morgan’s Second Law
holds.

Augustus De
Morgan 1806-

1871

Key Logical Equivalences

• Identity Laws:

• Domination Laws:

• Idempotent laws:

• Double Negation Law:

• Negation Laws:

Key Logical Equivalences (cont)

• Commutative Laws: ,

• Associative Laws:

• Distributive Laws:

• Absorption Laws:

More Logical Equivalences

Constructing New Logical
Equivalences

• We can show that two expressions are logically
equivalent by developing a series of logically
equivalent statements.

• To prove that we produce a series of
equivalences beginning with A and ending with B.

• Keep in mind that whenever a proposition
(represented by a propositional variable) occurs in
the equivalences listed earlier, it may be replaced by
an arbitrarily complex compound proposition.

Equivalence Proofs
Example: Show that
 is logically equivalent to

Equivalence Proofs
Example: Show that
 is logically equivalent to
Solution:

 Equivalence Proofs

Example: Show that
 is a tautology.
Solution:

 Equivalence Proofs

Example: Show that
 is a tautology.
Solution:

Propositional Satisfiability

• A compound proposition is satisfiable if
there is an assignment of truth values to its
variables that make it true. When no such
assignments exist, the compound
proposition is unsatisfiable.

• A compound proposition is unsatisfiable if
and only if its negation is a tautology.

Questions on Propositional
Satisfiability

 Example: Determine the satisfiability of the following
compound propositions:

 Solution: Satisfiable. Assign T to p, q, and r.

 Solution: Satisfiable. Assign T to p and F to q.

 Solution: Not satisfiable. Check each possible

assignment of truth values to the propositional variables
and none will make the proposition true.

Questions on Propositional
Satisfiability

 Example: Determine the satisfiability of the following
compound propositions:

 Solution: Satisfiable. Assign T to p, q, and r.

 Solution: Satisfiable. Assign T to p and F to q.

 Solution: Not satisfiable. Check each possible

assignment of truth values to the propositional variables
and none will make the proposition true.

Satisfiability problem

• First CS problem to be shown NP-Complete
– Problems that take too much time to solve….
– Cook 1971
– Math professor at UC Berkeley – now U Toronto

• Start of the area: Complexity theory
• Many problems now shown NP-Complete

Notation

Needed for the next
example.

Sudoku
• A Sudoku puzzle is represented by a 9×9

grid made up of nine 3×3 subgrids, known
as blocks. Some of the 81 cells of the
puzzle are assigned one of the numbers 1,2,
…, 9.

• The puzzle is solved by assigning numbers
to each blank cell so that every row, column
and block contains each of the nine possible
numbers.

• Example

Encoding as a Satisfiability Problem

• Let p(i,j,n) denote the proposition that is
true when the number n is in the cell in the
ith row and the jth column.

• There are 9×9 × 9 = 729 such propositions.
• In the sample puzzle p(5,1,6) is true, but

p(5,j,6) is false for j = 2,3,…9

Encoding (cont)
• For each cell with a given value, assert

p(d,j,n), when the cell in row i and column j
has the given value.

• Assert that every row contains every
number.

• Assert that every column contains every

number.

Encoding (cont)
• Assert that each of the 3 x 3 blocks contain

every number.

• Assert that no cell contains more than one
number. Take the conjunction over all
values of n, n’, i, and j, where each variable
ranges from 1 to 9 and ,

 of

Solving Satisfiability Problems
• To solve a Sudoku puzzle, we need to find an

assignment of truth values to the 729 variables of the
form p(i,j,n) that makes the conjunction of the
assertions true. Those variables that are assigned T yield
a solution to the puzzle.

• A truth table can always be used to determine the
satisfiability of a compound proposition. But this is too
complex even for modern computers for large problems.

• There has been much work on developing efficient
methods for solving satisfiability problems as many
practical problems can be translated into satisfiability
problems.

Propositional Logic Not Enough

• If we have:
“All men are mortal.”
“Socrates is a man.”

• Does it follow that “Socrates is mortal?”
• Can’t be represented in propositional logic.

Need a language that talks about objects,
their properties, and their relations.

• Later we’ll see how to draw inferences.

Introducing Predicate Logic
• Predicate logic uses the following new

features:
– Variables: x, y, z
– Predicates: P(x), M(x)
– Quantifiers (to be covered in a few slides):

• Propositional functions are a generalization of
propositions.
– They contain variables and a predicate, e.g., P(x)
– Variables can be replaced by elements from their

domain.

Propositional Functions
• Propositional functions become propositions (and have

truth values) when their variables are each replaced by a
value from the domain (or bound by a quantifier, as we
will see later).

• The statement P(x) is said to be the value of the
propositional function P at x.

• For example, let P(x) denote “x > 0” and the domain be
the integers. Then:
P(-3) is false.
P(0) is false.
P(3) is true.

• Often the domain is denoted by U. So in this example U
is the integers.

Examples of Propositional Functions
• Let “x + y = z” be denoted by R(x, y, z) and U (for all three

variables) be the integers. Find these truth values:
R(2,-1,5)

Solution: F
R(3,4,7)

Solution: T
R(x, 3, z)

Solution: Not a Proposition
• Now let “x - y = z” be denoted by Q(x, y, z), with U as the integers.

Find these truth values:
Q(2,-1,3)

 Solution: T
Q(3,4,7)

 Solution: F
 Q(x, 3, z)

 Solution: Not a Proposition

Examples of Propositional Functions
• Let “x + y = z” be denoted by R(x, y, z) and U (for all three

variables) be the integers. Find these truth values:
R(2,-1,5)

Solution: F
R(3,4,7)

Solution: T
R(x, 3, z)

Solution: Not a Proposition
• Now let “x - y = z” be denoted by Q(x, y, z), with U as the integers.

Find these truth values:
Q(2,-1,3)

 Solution: T
Q(3,4,7)

 Solution: F
 Q(x, 3, z)

 Solution: Not a Proposition

Compound Expressions
• Connectives from propositional logic carry over to

predicate logic.
• If P(x) denotes “x > 0,” find these truth values:

P(3) ∨ P(-1) Solution: T
P(3) ∧ P(-1) Solution: F
P(3) → P(-1) Solution: F
P(3) → P(-1) Solution: T

• Expressions with variables are not propositions and
therefore do not have truth values. For example,
P(3) ∧ P(y)
P(x) → P(y)

• When used with quantifiers (to be introduced next),
these expressions (propositional functions) become
propositions.

T
F
F
T

Compound Expressions
• Connectives from propositional logic carry over to

predicate logic.
• If P(x) denotes “x > 0,” find these truth values:

P(3) ∨ P(-1) Solution: T
P(3) ∧ P(-1) Solution: F
P(3) → P(-1) Solution: F
P(3) → P(-1) Solution: T

• Expressions with variables are not propositions and
therefore do not have truth values. For example,
P(3) ∧ P(y)
P(x) → P(y)

• When used with quantifiers (to be introduced next),
these expressions (propositional functions) become
propositions.

T
F
F
T

Quantifiers
• We need quantifiers to express the meaning of English

words including all and some:
– “All men are Mortal.”
– “Some cats do not have fur.”

• The two most important quantifiers are:
– Universal Quantifier, “For all,” symbol: ∀
– Existential Quantifier, “There exists,” symbol: ∃

• We write as in ∀x P(x) and ∃x P(x).
• ∀x P(x) asserts P(x) is true for every x in the domain.
• ∃x P(x) asserts P(x) is true for some x in the domain.
• The quantifiers are said to bind the variable x in these

expressions.

Charles Peirce (1839-1914)

Universal Quantifier
– ∀x P(x) is read as “For all x, P(x)” or “For every

x, P(x)”
Examples:

1) If P(x) denotes “x > 0” and U is the integers, then
∀x P(x) is false.

2) If P(x) denotes “x > 0” and U is the positive
integers, then ∀x P(x) is true.

3) If P(x) denotes “x is even” and U is the integers,
then ∀ x P(x) is false.

Existential Quantifier
• ∃x P(x) is read as “For some x, P(x)”, or as

“There is an x such that P(x),” or “For at least one
x, P(x).”
Examples:

1. If P(x) denotes “x > 0” and U is the
integers, then ∃x P(x) is true. It is also true
if U is the positive integers.

2. If P(x) denotes “x < 0” and U is the
positive integers, then ∃x P(x) is false.

3. If P(x) denotes “x is even” and U is the
integers, then ∃x P(x) is true.

Uniqueness Quantifier
• ∃!x P(x) means that P(x) is true for one and only

one x in the universe of discourse.
• This is commonly expressed in English in the

following equivalent ways:
– “There is a unique x such that P(x).”
– “There is one and only one x such that P(x)”

• Examples:
1. If P(x) denotes “x + 1 = 0” and U is the integers, then
∃!x P(x) is true.

2. But if P(x) denotes “x > 0,” then ∃!x P(x) is false.
• The uniqueness quantifier is not really needed as the

restriction that there is a unique x such that P(x) can
be expressed as:

 ∃x (P(x) ∧∀y (P(y) → y =x))

Thinking about Quantifiers
• When the domain of discourse is finite, we can think of

quantification as looping through the elements of the
domain.

• To evaluate ∀x P(x) loop through all x in the domain.
– If at every step P(x) is true, then ∀x P(x) is true.
– If at a step P(x) is false, then ∀x P(x) is false and the loop

terminates.
• To evaluate ∃x P(x) loop through all x in the domain.

– If at some step, P(x) is true, then ∃x P(x) is true and the loop
terminates.

– If the loop ends without finding an x for which P(x) is true,
then ∃x P(x) is false.

• Even if the domains are infinite, we can still think of the
quantifiers this fashion, but the loops will not terminate
in some cases.

Properties of Quantifiers
• The truth value of ∃x P(x) and ∀ x P(x) depend

on both the propositional function P(x) and on
the domain U.

• Examples:
1. If U is the positive integers and P(x) is the statement

“x < 2”, then ∃x P(x) is true, but ∀ x P(x) is false.
2. If U is the negative integers and P(x) is the statement

“x < 2”, then both ∃x P(x) and ∀ x P(x) are true.
3. If U consists of 3, 4, and 5, and P(x) is the statement

“x > 2”, then both ∃x P(x) and ∀ x P(x) are true.
But if P(x) is the statement “x < 2”, then both ∃x P(x)
and ∀ x P(x) are false.

Precedence of Quantifiers
• The quantifiers ∀ and ∃ have higher

precedence than all the logical operators.
• For example, ∀x P(x) ∨ Q(x) means (∀x

P(x))∨ Q(x)
• ∀x (P(x) ∨ Q(x)) means something

different.
• Unfortunately, often people write ∀x P(x)

∨ Q(x) when they mean ∀ x (P(x) ∨
Q(x)).

Translating from English to Logic
Example 1: Translate the following sentence into

predicate logic: “Every student in this class has
taken a course in Java.”

Solution:
 First decide on the domain U.

Solution 1: If U is all students in this class, define a
propositional function J(x) denoting “x has taken a
course in Java” and translate as ∀x J(x).

Solution 2: But if U is all people, also define a
propositional function S(x) denoting “x is a student in
this class” and translate as ∀x (S(x)→ J(x)).

 ∀x (S(x) ∧ J(x)) is not correct. What does it mean?

Translating from English to Logic

Example 2: Translate the following sentence into
predicate logic: “Some student in this class has
taken a course in Java.”

Solution:
First decide on the domain U.

Solution 1: If U is all students in this class, translate as
 ∃x J(x)
Solution 1: But if U is all people, then translate as
∃x (S(x) ∧ J(x))

 ∃x (S(x)→ J(x)) is not correct. What does it mean?

Returning to the Socrates Example

• Introduce the propositional functions Man(x)
denoting “x is a man” and Mortal(x) denoting “x is
mortal.” Specify the domain as all people.

• The two premises are:

• The conclusion is:

• Later we will show how to prove that the conclusion
follows from the premises.

Equivalences in Predicate Logic
• Statements involving predicates and

quantifiers are logically equivalent if and only
if they have the same truth value
– for every predicate substituted into these statements

and
– for every domain of discourse used for the

variables in the expressions.
• The notation S ≡T indicates that S and T are

logically equivalent.
• Example: ∀x ¬¬S(x) ≡ ∀x S(x)

Thinking about Quantifiers as
Conjunctions and Disjunctions

• If the domain is finite, a universally quantified proposition is
equivalent to a conjunction of propositions without quantifiers
and an existentially quantified proposition is equivalent to a
disjunction of propositions without quantifiers.

• If U consists of the integers 1,2, and 3:

• Even if the domains are infinite, you can still think of the

quantifiers in this fashion, but the equivalent expressions
without quantifiers will be infinitely long.

Negating Quantified Expressions

• Consider ∀x J(x)
“Every student in your class has taken a course in Java.”
 Here J(x) is “x has taken a course in calculus” and
 the domain is students in your class.

• Negating the original statement gives “It is not the
case that every student in your class has taken Java.”
This implies that “There is a student in your class
who has not taken calculus.”

 Symbolically ¬∀x J(x) and ∃x ¬J(x) are
equivalent

Negating Quantified Expressions
(continued)

• Now Consider ∃ x J(x)
“There is a student in this class who has taken a

course in Java.”
Where J(x) is “x has taken a course in Java.”

• Negating the original statement gives “It is not
the case that there is a student in this class who
has taken Java.” This implies that “Every
student in this class has not taken Java”

 Symbolically ¬∃ x J(x) and ∀ x ¬J(x) are
equivalent

De Morgan’s Laws for Quantifiers
• The rules for negating quantifiers are:

• The reasoning in the table shows that:

• These are important. You will use these.

Some Fun with Translating from
English into Logical Expressions

• U = {fleegles, snurds, thingamabobs}
F(x): x is a fleegle
S(x): x is a snurd
T(x): x is a thingamabob

 Translate “Everything is a fleegle”

 Solution: ∀x F(x)

Translation (cont)
• U = {fleegles, snurds, thingamabobs}

F(x): x is a fleegle
S(x): x is a snurd
T(x): x is a thingamabob

 “Nothing is a snurd.”

 Solution: ¬∃x S(x) What is this
equivalent to?

 Solution: ∀x ¬ S(x)

Translation (cont)

• U = {fleegles, snurds, thingamabobs}
F(x): x is a fleegle
S(x): x is a snurd
T(x): x is a thingamabob

 “All fleegles are snurds.”

 Solution: ∀x (F(x)→ S(x))

Translation (cont)

• U = {fleegles, snurds, thingamabobs}
F(x): x is a fleegle
S(x): x is a snurd
T(x): x is a thingamabob

 “Some fleegles are thingamabobs.”

 Solution: ∃x (F(x) ∧ T(x))

Translation (cont)
• U = {fleegles, snurds, thingamabobs}

F(x): x is a fleegle
S(x): x is a snurd
T(x): x is a thingamabob

 “No snurd is a thingamabob.”

 Solution: ¬∃x (S(x) ∧ T(x)) What is this
equivalent to?

 Solution: ∀x (¬S(x) ∨ ¬T(x))

Translation (cont)

• U = {fleegles, snurds, thingamabobs}
F(x): x is a fleegle
S(x): x is a snurd
T(x): x is a thingamabob

 “If any fleegle is a snurd then it is also a
thingamabob.”

 Solution: ∀x ((F(x) ∧ S(x))→ T(x))

	CompSci 102�Discrete Math for Computer Science
	Announcements
	Classwork problem from last time
	Precedence of Logical operators
	Precedence of Logical operators
	Translating English Sentences
	Translating English Sentences
	Example
	Example
	System Specifications
	System Specifications
	Consistent System Specifications
	Consistent System Specifications
	Logic Puzzles
	Tautologies, Contradictions, and Contingencies
	Logically Equivalent
	De Morgan’s Laws
	Key Logical Equivalences
	Key Logical Equivalences (cont)
	More Logical Equivalences
	Constructing New Logical Equivalences
	Equivalence Proofs
	Equivalence Proofs
	 Equivalence Proofs
	 Equivalence Proofs
	Propositional Satisfiability
	Questions on Propositional Satisfiability
	Questions on Propositional Satisfiability
	Satisfiability problem
	Notation
	Sudoku
	Encoding as a Satisfiability Problem
	Encoding (cont)
	Encoding (cont)
	Solving Satisfiability Problems
	Propositional Logic Not Enough
	Introducing Predicate Logic
	Propositional Functions
	Examples of Propositional Functions
	Examples of Propositional Functions
	Compound Expressions
	Compound Expressions
	Quantifiers
	Universal Quantifier
	Existential Quantifier
	Uniqueness Quantifier
	Thinking about Quantifiers
	Properties of Quantifiers
	Precedence of Quantifiers
	Translating from English to Logic
	Translating from English to Logic
	Returning to the Socrates Example
	Equivalences in Predicate Logic
	Thinking about Quantifiers as Conjunctions and Disjunctions
	Negating Quantified Expressions
	Negating Quantified Expressions (continued)
	De Morgan’s Laws for Quantifiers
	Some Fun with Translating from English into Logical Expressions
	Translation (cont)
	Translation (cont)
	Translation (cont)
	Translation (cont)
	Translation (cont)

