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Announcements
• Read for next time Chap. 2.1-2.2
• Homework 1 due next time
• Bala is the TA leading recitations until Feb 6
• UTA Jimmy Mu will have one night in the 

link
• Finish notes from last time ….

Nested Quantifiers
• Nested quantifiers are often necessary to express the 

meaning of sentences in English as well as 
important concepts in computer science and 
mathematics. 

    Example: “Every real number has an inverse” is   
        �x �y(x + y = 0)  
      where the domains of x and y are the real 

numbers.

• We can also think of nested propositional functions:
�x �y(x + y = 0) can be viewed as �x Q(x) where Q(x) 

is           �y P(x, y) where P(x, y) is (x + y = 0) 

Thinking of Nested Quantification
• Nested Loops

– To see if �x�yP (x,y) is true, loop through the 
values of x : 

�  At each step, loop through the values for y.  

 

�x �y P(x,y) is true if the outer loop ends after stepping 
through each x.  

– To see if �x �yP(x,y) is true, loop through the 
values of x: 

� At each step, loop through the values for y. 
� ) has been shown to be false.  

    �x �y P(x,y)  is true if the outer loop ends after 
stepping through each x. 

• If the domains of the variables are infinite, then 
this process can not actually be carried out.



Order of Quantifiers
Examples:
1. Let P(x,y) be the statement “x + y = y + 

x.” Assume that U is the real numbers. 
Then �x �yP(x,y)  and     �y �xP(x,y) do
they have the same truth value?

Both True
2. Let Q(x,y) be the statement “x + y = 0.” 

Assume that U is the real numbers. Then 
do  �x �yP(x,y)  and �y �xP(x,y) have the 
same truth value?.

First True, Second one False

Questions on Order of Quantifiers 

    Example 11: Let U be the real numbers,
    Define P(x,y) : x · y = 0 

    What is the truth value of the following:
1. �x�yP(x,y)       

     Answer: False
2. �x�yP(x,y)        

     Answer: True
3. �x�y P(x,y)

     Answer: True
4. �x � y P(x,y)

Answer: True

Questions on Order of Quantifiers

Example 22: Let U be the real numbers,
Define P(x,y) : x / y = 1 

What is the truth value of the following:
1. �x�yP(x,y)       

      Answer: False
2. �x�yP(x,y)        

     Answer: True
3. �x�y P(x,y)

    Answer: False
4. �x � y P(x,y)

   Answer: True

Quantifications of Two Variables

Statement When True? When False
P(x,y) is true for every pair 
x,y.

There is a pair x, y for
which P(x,y) is false.

For every x there is a y for
which P(x,y) is true.

There is an x such that 
P(x,y) is false for every y.

There is an x for which 
P(x,y) is true for every y.

For every x there is a y for 
which P(x,y) is false.

There is a pair x, y for
which P(x,y) is true.

P(x,y) is false for every 
pair x,y



Translating Nested Quantifiers into 
English

Example 11: Translate the statement 
                �������������	����	���
������	���� 

where C(x) is “x has a computer,” and F(x,y) is “x and y
are friends,” and the domain for both x and y consists of all 
students in your school. 
Solution: Every student in your school has a computer or 
has a friend who has a computer. 

Example 1: Translate the statement 
        �x�y �
��������	�
�����
��
��	��
������	�
�� 
   Solution: Every student none of whose friends are 

also friends with each other.

Translating Mathematical 
Statements into Predicate Logic 

Example : Translate “The sum of two positive integers is 
always positive” into a logical expression.

Solution:
1. Rewrite the statement to make the implied quantifiers and 

domains explicit:
“For every two integers, if these integers are both positive, then the 

sum of these integers is positive.”
2. Introduce the variables x and y, and specify the domain, to 

obtain:
“For all positive integers x and y, x + y is positive.”

3. The result is:
            �x � y ((x ����
��y > 0)���x + y > 0)) 

 where the domain of both variables consists of all integers

Translating English into Logical 
Expressions Example

Example: Use quantifiers to express the 
statement “There is a woman who has taken 
a flight on every airline in the world.”

Solution:
1. Let P(w,f) be “w has taken f  ” and Q(f,a) be “f

is a flight on a .”
2. The domain of w is all women, the domain of f

is all flights, and the domain of a is all airlines.
3. Then the statement can be expressed as:
             �w �a �f  (P(w,f ��
�Q(f,a)) 

Questions on Translation from English
Choose the obvious predicates and express in predicate logic.

Example 11: “Brothers are siblings.”
            Solution: �x �y (B(x,y) ��S(x,y))

Example 2: “Siblinghood is symmetric.”
            Solution: �x �y (S(x,y) ��S(y,x))

Example 3: “Everybody loves somebody.”
            Solution: �x �y L(x,y)
Example 4: “There is someone who is loved by everyone.”
            Solution: �y �x L(x,y)
Example 5: “There is someone who loves someone.”
            Solution: �x �y L(x,y)
Example 6: “Everyone loves himself”
            Solution: �x L(x,x)



Negating Nested Quantifiers
Example 11: Recall the logical expression developed three slides back:
                 �w �a �f  (P(w,f ��
�Q(f,a))

   Part 1: Use quantifiers to express the statement that “There does not 
exist a woman who has taken a flight on every airline in the world.”

    Solution: ��w �a �f  (P(w,f ��
�Q(f,a))  

Part 2: Now use De Morgan’s Laws to move the negation as far inwards 
as possible.

     Solution:
1. ��w �a �f  (P(w,f ��
�Q(f,a))  

2.  �w � �a �f  (P(w,f ��
�Q(f,a))  by De Morgan’s for � 

3.  �w � a � �f  (P(w,f ��
�Q(f,a))  by De Morgan’s for � 

4. �w � a �f � (P(w,f ��
�Q(f,a))   by De Morgan’s for � 

5. �w � a �f (��P(w,f ������Q(f,a�����	�����������������
.
Part 3: Can you translate the result back into English?
       Solution:
        “For every woman there is an airline such that for all flights, this 

woman has not taken that flight or that flight is not on this airline”

Some Questions about Quantifiers
• Can you switch the order of quantifiers? 

– Is this a valid equivalence?
         Solution: Yes The order in which x and y are picked does not matter.

– Is this a valid equivalence?
         Solution: No! Try “x + y = 0” for P(x,y) with U being the integers. The 

order in which the values of x and y are picked does matter.

• Can you distribute quantifiers over logical connectives? 
– Is this a valid equivalence?
         Solution: Yes! 

– Is this a valid equivalence?
         Solution: No. Pick “x is a fish” for P(x) and “x has scales” for Q(x) 

with the domain of discourse being all animals. Then the left side is false, 
because there are some fish that do not have scales.  But the right side is 
true since not all animals are fish.

Revisiting the Socrates Example

• We have the two premises:
– “All men are mortal.”
– “Socrates is a man.”

• And the conclusion: 
– “Socrates is mortal.”

• How do we get the conclusion from the 
premises?

The Argument

• We can express the premises (above the 
line) and the conclusion (below the line) in 
predicate logic as an argument:

• We will see shortly that this is a valid 
argument.



Valid Arguments 
• We will show how to construct valid 

arguments in two stages; first for 
propositional logic and then for predicate 
logic. The rules of inference are the 
essential building block in the construction 
of valid arguments. 

1. Propositional Logic
Inference Rules

2. Predicate Logic
Inference rules for propositional logic plus additional 

inference rules to handle variables and quantifiers.

Arguments in Propositional Logic
• A argument in propositional logic is a sequence of 

propositions. All but the final proposition are called 
premises. The last statement is the conclusion.

• The argument is valid if the premises imply the 
conclusion.  An argument form   is  an argument 
that is valid no matter what propositions are 
substituted into its propositional variables.    

• If the premises are  p1 ,p2, …,pn  and the conclusion 
is q then               

        (p1  
�p2 
���
�pn ) � q is a tautology. 
• Inference rules are all argument simple argument 

forms that will be used to construct more complex 
argument forms.

      

Rules of Inference for Propositional 
Logic: Modus Ponens

                                       
Example:
Let p be “It is snowing.”
Let q be “I will study discrete math.”

“If it is snowing,  then I will study discrete math.”
“It is snowing.”

“Therefore, I will  study discrete math.”

Corresponding Tautology:
(p 
��p �q�����q

Modus Tollens

                                     
Example:
Let p be “it is snowing.”
Let q be “I will study discrete math.”

“If it is snowing,  then I will study discrete math.”
“I will not study discrete math.”

“Therefore, it is not snowing.”

Corresponding 
Tautology:

(�q
�p �q����p



Hypothetical Syllogism

                                         
Example:
Let p be “it snows.”
Let q be “I will study discrete math.”
Let r be “I will get an A.”

“If it snows,  then I will study discrete math.”
“If I study discrete math, I will get an A.”

“Therefore, If it snows, I will get an A.”

Corresponding Tautology:
((p �q��
 (!�r����p��r)

 

Disjunctive Syllogism

                                   

Example:
Let p be “I will study discrete math.”
Let q be “I will study English literature.”

“I will study discrete math or I will study English literature.”
“I will not study discrete math.”

“Therefore, I will study English literature.”

Corresponding 
Tautology:
(�p
�p �q���q

Addition

                        
Example:
Let p be “I will study discrete math.”
Let q be “I will visit Las Vegas.”

“I will study discrete math.”

“Therefore, I will  study discrete math or I will 
visit Las Vegas.”

Corresponding Tautology:
p ��p �q)

Simplification

                        
Example:
Let p be “I will study discrete math.”
Let q be “I will study English literature.”

“I will study discrete math and English literature”

“Therefore, I will study discrete math.”

Corresponding Tautology: 
(p
q���p



Conjunction

                        
Example:
Let p be “I will study discrete math.”
Let q be “I will study English literature.”

“I will study discrete math.”
“I will study  English literature.”

“Therefore, I will study discrete math and I will 
study English literature.”

Corresponding 
Tautology:
((p) 
��q�����p 
�q)

Resolution

                        
Example:
Let p be “I will study discrete math.”
Let r be “I will study English literature.”
Let q be “I will study databases.”

“I will not study discrete math or I will study English 
literature.”
“I will study  discrete math or I will study databases.”

“Therefore, I will study databases or I will English literature.”

Corresponding Tautology:
((�p ��r ) 
��p ��q�����q ��r)

Resolution plays an important role in 
AI and is used in Prolog.

Using the Rules of Inference to 
Build Valid Arguments

• A valid argument is a sequence of statements. Each 
statement is either a premise or follows from 
previous statements by  rules of inference. The last 
statement is called conclusion.

• A valid argument takes the following form:
                       S1 

         S2 

                                       .
                                       .
                                       .
                               Sn

 

Valid Arguments
Example 11: From the single proposition 

Show that q is a conclusion.

Solution:

Step                              Reason



Valid Arguments
Example 22:
• With these hypotheses:

“It is not sunny this afternoon and it is colder than yesterday.”
“We will go swimming only if it is sunny.”
“If we do not go swimming, then we will take a canoe trip.”
“If we take a canoe trip, then we will be home by sunset.”

• Using the inference rules, construct a valid argument for the conclusion:
“We will be home by sunset.”

Solution:
1. Choose propositional variables:

p : “It is sunny this afternoon.”      r : “We will go swimming.”  t : “We will 
be home by sunset.”

q : “It is colder than yesterday.”     s  : “We will take a canoe trip.” 
2. Translation into propositional logic:

Continued on next slide
�

Valid Arguments
3. Construct the Valid Argument 

Handling Quantified Statements
• Valid arguments for quantified statements 

are a sequence of statements. Each 
statement is either a premise or follows 
from previous statements by  rules of 
inference which include:
– Rules of Inference for Propositional Logic
– Rules of Inference for Quantified Statements

• The rules of inference for quantified 
statements are introduced in the next several 
slides.

Universal Instantiation (UI)
          
                        

Example:

Our domain consists of all cats and Charlotte  is a cat.

“All cats are cuddly.”

“Therefore,  Charlotte  is cuddly.”

   



Universal Generalization (UG)

                        

Used often implicitly in Mathematical 
Proofs. 

Existential Instantiation (EI)

       
                        

Example:

“There is someone who got an A in the course.”
“Let’s call her a and say that a got an A”

  

Existential Generalization (EG)

                        

Example:

“Michelle got an A in the class.”
“Therefore,  someone got an A in the class.”

 

Using Rules of Inference
Example 11: Using the rules of inference, 

construct a valid argument to show that
“John Smith has two legs”

    is a consequence of the premises:
“Every man has two legs.” “John Smith is a man.”

Solution: Let M(x) denote  “x is a man” and L(x)
“ x has two legs” and let John Smith be a 
member of the domain. 
Valid Argument:



Using Rules of Inference

Example 22: Use the rules of inference to construct a 
valid argument showing that the conclusion
“Someone who passed the first exam has not read the book.”

follows from the premises
“A student in this class has not read the book.”
“Everyone in this class passed the first exam.”

Solution: Let C(x) denote  “x is in this class,” B(x)
denote  “ x has  read the book,” and P(x) denote   “x
passed the first exam.”

First we translate the
premises and conclusion 
into symbolic form.

Continued on next slide
�

Using Rules of Inference
Valid Argument:

Returning to  the Socrates Example Solution for Socrates Example

Valid Argument



Universal Modus Ponens

Universal Modus Ponens combines universal 
instantiation and modus ponens into one rule. 

This rule could be used in the Socrates example.


