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February 7, 2012

Prof. Rodger

Announcements
• Read for next time Chap. 3.1-3.3
• Homework 3 due Tuesday

• We’ll finish Chapter 2 first today

Chap. 3.1  Algorithms
   Definition: An algorithm is a finite set of precise 

instructions for performing a computation or for 
solving a problem.

   Example: Describe an algorithm for finding the 
maximum value in a finite sequence of integers.

   Solution: Perform the following steps:
1. Set the temporary maximum equal to the first integer in the 

sequence.
2. Compare the next integer in the sequence to the temporary 

maximum.
– If it is larger than the temporary maximum, set the temporary 

maximum equal to this integer.
3. Repeat the previous step if there are more integers. If not, stop.
4. When the algorithm terminates, the temporary maximum is the 

largest integer in the sequence.

Specifying Algorithms
• Algorithms can be specified in English or in  

pseudocode.
• Pseudocode is an intermediate step between an 

English and coding using a programming 
language. 

• Appendix 3 specifies pseudocode for this book 
(similar to Java) 

• Pseudocode helps analyze the time required to 
solve a problem using an algorithm, independent 
of the actual programming language used to 
implement algorithm. 



Properties of Algorithms
• Input: An algorithm has input values from a 

specified set.
• Output: From the input values, the algorithm 

produces the output values from a specified set. The 
output values are the solution.

• Correctness: An algorithm should produce the 
correct output values for each set of input values.

• Finiteness: An algorithm should produce the output 
after a finite number of steps for any input.

• Effectiveness: It must be possible to perform each 
step of the algorithm correctly and in a finite 
amount of time.

• Generality: The algorithm should work for all 
problems of the desired form.

Finding the Maximum Element in a 
Finite Sequence

• The algorithm in pseudocode:

• Does this algorithm have all the properties 
listed on the previous slide?   

procedure max(a1, a2, …., an: integers)
max := a1
for i := 2 to n

if max < ai then max := ai

return max{max is the largest element}

Problem
• Describe an algorithm that determines 

whether a function from a finite set of 
integers to another finite set of integers is 
onto. 

• A function f from A to B is “onto” iff for 
every element b there is an element a with 
f(a) = b.

Problem
• Describe an algorithm that determines 

whether a function from a finite set of 
integers to another finite set of integers is 
onto. 

• A function f from A to B is “onto” iff for 
every element b there is an element a with 
f(a) = b.



Solution: Algorithm
• Assume A has n elements, B has m 

elements.
• Keep a count for each element in B, setting 

counts to 0.
• For each � � � compute � � = � and add 

one to b’s count.
• If any b has a count of 0, then not “onto”

Solution: Algorithm
• Assume A has n elements, B has m 

elements.
• Keep a count for each element in B, setting 

counts to 0.
• For each � � � compute � � = � and add 

one to b’s count.
• If any b has a count of 0, then “not onto”, 

otherwise “onto”

Some Example Algorithm Problems

• Three classes of problems will look at in 
this chapter
1. Searching Problems: finding the position of a 

particular element in a  list.
2. Sorting problems: putting the elements of a list 

into increasing order.
3. Optimization Problems: determining the 

optimal value (maximum or minimum) of a 
particular quantity over all possible inputs.

Greedy Algorithms
• Optimization problems minimize or maximize some 

parameter over all possible inputs.
• Examples:

– Finding a route between two cities with the smallest total 
mileage.

– Determining how to encode messages using the fewest possible 
bits.

• Solved using a greedy algorithm, which makes the “best” 
choice at each step. Making the “best choice” at each step 
does not necessarily produce an optimal solution to the 
overall problem, but in many instances, it does. 

• Try to prove that this approach always produces an optimal 
solution, or find a counterexample to show that it does not.



Greedy Algorithms: Making Change

   Example:  Design a greedy algorithm for making 
change (in  U.S. money) of n cents with the 
following coins: quarters (25 cents), dimes (10
cents), nickels (5 cents), and pennies (1 cent) , using 
the least total number of coins.

   Idea: At each step choose the coin with the largest 
possible value that does not exceed the amount of 
change left.
1. If n = 67 cents, first choose a quarter leaving                  

67�25 = 42 cents. Then choose another quarter 
leaving     42 �25 = 17 cents 

2. Then choose 1 dime, leaving 17 ��10 = 7 cents. 

3. Choose 1 nickel, leaving 7 – 5 – 2 cents. 

4. Choose a penny, leaving one cent. Choose another 
penny leaving 0 cents. 
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Greedy Change-Making Algorithm
   Solution: Greedy change-making algorithm for n

cents. The algorithm works with any coin 
denominations c1, c2, …,cr .

– For the example of U.S. currency, we may have 
quarters, dimes, nickels and pennies,  with c1 = 25, c2 =
10, c3 = 5, and c4 = 1. 

procedure change(c1, c2, …, cr: values of coins, where c1>
c2> … > cr ;       n: a positive integer)

for i := 1 to r 

       di := 0 [di counts the coins of denomination ci]  

while n 	 ci

di := di + 1 [add a coin of denomination ci] 

 n = n - ci     

[di counts the coins ci]
 

 

Proving Optimality for U.S. Coins
• Show that the change making algorithm for U.S. coins is optimal.
   Lemma 11: If n is a positive integer, then n cents in change using 

quarters, dimes, nickels, and pennies, using the fewest coins 
possible has at most 2 dimes, 1 nickel, 4 pennies, and cannot have 
2 dimes and a nickel. The total amount of change in dimes, 
nickels, and pennies must not exceed 24 cents.
Proof: By contradiction

– If we had 3 dimes, we could replace them with a quarter and a 
nickel. 

– If we had 2 nickels, we could replace them with  1 dime.
– If we had 5 pennies, we could replace them with a nickel.
– If we had 2 dimes and 1  nickel, we could replace them with a 

quarter.
– The allowable combinations, have a maximum value of 24

cents; 2 dimes and 4 pennies. 
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Proving Optimality for U.S. Coins
Theorem: The greedy change-making algorithm for U.S. 
coins produces change using the fewest coins possible.

Proof: By contradiction.
1. Assume there is a positive integer n such that change can be 

made for  n cents using quarters, dimes, nickels, and 
pennies, with a fewer total number of coins than given by 
the algorithm.

2. Then, q 
 ��q  where q 
 is the number of quarters used in 
this optimal way and q is the number of quarters in the 
greedy algorithm’s solution. But this is not possible by 
Lemma 1, since the value of the coins other than 
quarters can not be greater than 24 cents. 

3. Similarly, by Lemma 1, the two algorithms must have 
the same number of dimes, nickels, and quarters. 
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Greedy Change-Making Algorithm 
• Optimality depends on the denominations available.
• For U.S. coins, optimality still holds if we add half 

dollar coins (50 cents) and dollar coins (100 cents).
• But if we allow only quarters (25 cents), dimes (10

cents), and pennies (1 cent), the algorithm no longer 
produces the minimum number of coins.
– Give an example amount that it doesn’t work for. 
– Consider the example of 31 cents. The optimal 

number of coins is 4, i.e., 3 dimes and 1 penny. 
What does the algorithm output?
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Greedy Scheduling
Example: We have a group of proposed talks with start 
and end times. Construct a greedy algorithm to schedule 
as many as possible in a lecture hall, under the following 
assumptions:
– When a talk starts, it continues till the end.
– No two talks can occur at the same time.
– A talk can begin at the same time that another ends.
– Once we have selected some of the talks, we cannot add a 

talk which is incompatible with those already selected 
because it overlaps at least one of these previously selected 
talks.

– How should we make the “best choice” at  each step of the 
algorithm? That is, which talk do we pick ?

• The talk that starts earliest among those compatible with already 
chosen talks?

• The talk that is shortest among those already compatible?
• The talk that ends earliest among those compatible with already 

chosen talks?

Greedy Scheduling
• Picking the shortest talk doesn’t work.

• Can you find a counterexample here?
• But picking the one that ends soonest does 

work. The algorithm is specified on the next 
page. 

Talk 
2 

Start:  9:00 AM

End: 10:00 AM

Talk 
1 

Start: 8:00 AM

End :9:45 AM Talk 
3 
End: 11:00 AM

Start: 9:45 AM

Greedy Scheduling algorithm
   Solution: At each step, choose the talks 

with the earliest ending time among the 
talks compatible with those selected.

procedure schedule(s1 ��s2 ��… ��sn : start times, e1 ��e2 ��… 
��en : end times)

sort talks by finish time and reorder so that e1 ��e2 ��… ��en
S :=  �
for j := 1 to n 

if talk j is compatible with S then 
S := S �
{talk j} 

rreturn S [ S is the set of talks scheduled] 
          
    



Halting Problem 
Example: Can we develop a procedure that 
takes as input a computer program along with 
its input and determines whether the program 
will eventually halt with that input.

• Solution: Proof by contradiction.
• Assume that there is such a procedure and call 

it H(P,I). The procedure H(P,I) takes as input a 
program P and the input I to P.
– H outputs “halt” if it is the case that P will stop 

when run with input I.
– Otherwise, H outputs “loops forever.”

Halting Problem
• Since a program is a string of characters,  

we can call H(P,P). Construct a procedure 
K(P), which works as follows. 
– If H(P,P) outputs “loops forever” then K(P)

halts.
– If H(P,P) outputs “halt” then K(P) goes into an 

infinite loop printing “ha” on each iteration.

Halting Problem

• Now we call K with K as input, i.e. K(K).
– If the output of H(K,K) is “loops forever” then 

K(K) halts. A Contradiction.
– If the output of H(K,K) is “halts” then K(K)

loops forever. A Contradiction.
• Therefore, there can not be a procedure that 

can decide whether or not an arbitrary 
program halts. The halting problem is 
unsolvable. 

Section Summary

• Big-O Notation
• Big-O Estimates for Important Functions
• Big-Omega and Big-Theta Notation

Paul Gustav Heinrich Bachmann
(1837-1920)

Donald E. Knuth
(Born 1938)



The Growth of Functions
• Want to know how fast a function grows
• Want to understand how quickly an 

algorithm can solve a problem as the size of 
the input grows
– compare the efficiency of two different 

algorithms for solving the same problem. 
– determine whether it is practical to use a 

particular algorithm as the input grows. 

Big-O Notation
   Definition: Let f and g be functions from 

the set of integers or the set of real numbers 
to the set of real numbers. We say that f(x)
is O(g(x)) if there are constants C and k
such that

    whenever  x > k. 
• This is read as “f(x) is big-O of g(x)” or   “g

asymptotically dominates f.”

Illustration of Big-O Notation

f(x) is O(g(x)

Important Points about Big-O Notation
• If a pair C,k is found, then there are infinitely 

many pairs.  We can always make the k or the C
larger and still maintain the inequality

•                          
– Any pair C 
 and k
 where C < C
 and k < k 
 is also a 

valid pair since                                                            
whenever x > k
 > k.

Don’t use “ f(x) = O(g(x))” instead of “ f(x) is 
O(g(x)).”  
– It is ok to write f(x) � O(g(x)), because  O(g(x))

represents the set of functions that are O(g(x)).

                                              



Using the Definition of Big-O Notation
   Example: Show that                                    is            .
   Solution: Since when x > 1, x < x2 and 1 < x2

               
– Can take C = 4 and k = 1 to show that

                                                      
• Alternatively, when x > 2, we have   2x � x2 and 1

< x2. Hence,                                                                          
when x > 2.  

– Can take C = 3 and k = 2 instead.                                              
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Illustration of Big-O Notation         
is                                                             

Big-O Notation
• Both                                     and
    are such that                                 and                              .
   We say that the two functions are of the same order.

• If                                and h(x) is larger than g(x) for all 
positive real numbers, then                              . 

        
• Note that  if                               for x > k and if
     for all x,    then                               if x > k. Hence,                       

.

• For many applications, the goal is to select the function g(x)
in O(g(x)) as small as possible (up to multiplication by a 
constant, of course).

                                
                                                   

                         
                         

.



Using the Definition of Big-O Notation
   Example: Show that 7x2 is O(x3).
   Solution: When x > 7, 7x2 < x3. Take C =1 

and k = 7 to establish that 7x2 is O(x3).
    (Would C = 7 and k = 1 work?)
    Example: Show that n2 is  not O(n).
    Solution: Suppose there are constants C and

k for which n2  � Cn, whenever n > k. Then  
(by dividing both sides of n2 � Cn) by n, 
then n  � C must hold for all n > k. A 
contradiction!

Using the Definition of Big-O Notation
   Example: Show that 7x2 is O(x3).
   Solution: When x > 7, 7x2 < x3. Take C =1 

and k = 7 to establish that 7x2 is O(x3).
    (Would C = 7 and k = 1 work?)
    Example: Show that n2 is  not O(n).
    Solution: Suppose there are constants C and

k for which n2  � Cn, whenever n > k. Then  
(by dividing both sides of n2 � Cn) by n, 
then n  � C must hold for all n > k. A 
contradiction!

Big-O Estimates for Polynomials

Example: Let 
where                                 are real numbers with an ��.

Then f(x) is O(xn).                           
Proof:  |f(x)| = |anxn + an-1 xn-1 + ��� + a1x1   + a1|
                       ��|an|xn + |an-1| xn-1 + ··· + |a1|x1 + |a1|
                       = xn (|an| + |an-1| /x + ··· + |a1|/xn-1 + |a1|/ xn)
                       ��xn (|an| + |an-1| + ··· + |a1|+ |a1|)
• Take C = |an| + |an-1| + ··· + |a1|+ |a1| and k = 1. Then f(x) 

is O(xn). 
• The leading term anxn of a polynomial dominates its 

growth.  

Uses triangle inequality, an 
exercise in Section 1.8.

   Assuming x > 1 

Big-O Estimates for some Important 
Functions

   Example: Use big-O notation to estimate 
the sum of the first n positive integers.

   Solution:

   Example: Use big-O notation to estimate 
the factorial function 

   Solution:

Continued �



Big-O Estimates for some Important 
Functions

   Example: Use big-O notation to estimate 
the sum of the first n positive integers.

   Solution:

   Example: Use big-O notation to estimate 
the factorial function 

   Solution:

Continued �

Big-O Estimates for some Important 
Functions

   Example: Use big-O notation to estimate log n!

   Solution: Given that                  (previous slide) 
                     then                                    .
     Hence, log(n!) is O(n����(n)) taking C = 1 and 

k = 1.

   

Big-O Estimates for some Important 
Functions

   Example: Use big-O notation to estimate log n!

   Solution: Given that                  (previous slide) 
                     then                                    .
     Hence, log(n!) is O(n����(n)) taking C = 1 and 

k = 1.

   

                          

Display of Growth of Functions

Note the difference in behavior of functions as n
gets larger



Useful Big-O Estimates Involving 
Logarithms, Powers, and Exponents

• If d > c > 1, then 
            nc is O(nd), but nd is not  O(nc).
• If  b > 1 and c and d are positive, then 
        (logb n)c is O(nd), but nd is not O((logb n)c).
• If  b > 1 and  d is positive, then 
            nd is O(bn), but bn is not  O(nd).
• If c > b > 1, then 
            bn is O(cn), but cn is not  O(bn).

Combinations of Functions
• If f1 (x) is O(g1(x)) and f2 (x) is O(g2(x)) then 
                     ( f1 + f2 )(x) is O(max(|g1(x) |,|g2(x) |)).

                                                           
– See next slide for proof

• If f1 (x) and f2 (x) are both O(g(x)) then 
                     ( f1 + f2 )(x) is O(g(x)).

– See text for argument                                                       
•     If f1 (x) is O(g1(x)) and f2 (x) is O(g2(x)) then 
                     ( f1 f2 )(x) is O(g1(x)g2(x)).                                          

– See text for argument

     

Combinations of Functions
• If f1 (x) is O(g1(x)) and f2 (x) is O(g2(x)) then 
                     ( f1 + f2 )(x) is O(max(|g1(x) |,|g2(x) |)).

                                                           
– By the definition of big-O notation, there are constants C1,C2 ,k1,k2 such that       

| f1 (x) ��C1|g1(x) | when x > k1 and f2 (x) ��C2|g2(x) | when x > k2 .  
– |( f1 + f2 )(x)| = |f1(x) + f2(x)| 

                                   ��|f1 (x)| + |f2 (x)|      by the triangle inequality |a + b| �����������

– |f1 (x)| + |f2 (x)| ��C1|g1(x) | + C2|g2(x) |  
                                             ��C1|g(x) | + C2|g(x) |     where  g(x) = max(|g1(x)|,|g2(x)|) 

                                             = (C1 + C2) |g(x)| 
                                             = C|g(x)|           where C = C1 + C2 

– Therefore |( f1 + f2 )(x)| ��C|g(x)| whenever x > k, where k = max(k1,k2).

     

Ordering Functions by Order of Growth

• Put the functions below in order so that each function is big-O
of the next function on the list.

• f1(n) = (1.5)n

• f2(n) = 8n3+17n2  +111

• f3(n) = (log n )2 
• f4(n) = 2n

• f5(n) = log (log n)

• f6(n) = n2 (log n)3

• f7(n) = 2n (n2  +1) 

• f8(n) = n3+ n(log n)2  

• f9(n) = 10000 

• f10(n) = n! 

We  solve this exercise by successively finding the function that grows 
slowest among all those left on the list.

• f9(n) = 10000       (constant, does not increase with n) 

 
•f5(n) = log (log n)     (grows slowest of all the others) 

•f3(n) = (log n )2       (grows next slowest) 

 
•f6(n) = n2 (log n)3   (next largest, (log n)3 factor smaller than any power of n) 

 

•f2(n) = 8n3+17n2  +111    (tied with the one below)

•f8(n) = n3+ n(log n)2          (tied with the one above) 

•f1(n) = (1.5)n   (next largest, an exponential function)

•f4(n) = 2n        (grows faster than one above since 2 > 1.5) 

 
•f7(n) = 2n (n2  +1)     (grows faster than above because of the n2  +1 factor) 

•f10(n) = 3n             ( n!  grows faster than cn   for  every c) 
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•f3(n) = (log n )2       (grows next slowest) 
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•f2(n) = 8n3+17n2  +111    (tied with the one below)

•f8(n) = n3+ n(log n)2          (tied with the one above) 

•f1(n) = (1.5)n   (next largest, an exponential function)

•f4(n) = 2n        (grows faster than one above since 2 > 1.5) 

 
•f7(n) = 2n (n2  +1)     (grows faster than above because of the n2  +1 factor) 

•f10(n) = 3n             ( n!  grows faster than cn   for  every c) 

Big-Omega Notation
Definition: Let f and g be functions from the set of integers or 
the set of real numbers to the set of real numbers. We say that

                                          if there are constants C and k such that
                                            when x > k.
• We say that “f(x) is big-Omega of g(x).”
• Big-O gives an upper bound on the growth of a function, 

while Big-Omega gives a lower bound. 
• f(x) is  �(g(x)) if and only if g(x) is O(f(x)). This follows from 

the definitions. 

                           
                           

� is the upper case version of the lower 

case Greek letter �.

Big-Omega Notation
   Example:  Show that                                        

is                                     where                  .
    Solution:                                                     for 

all positive real numbers x.
– Is it also the case that                     is                                
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Big-Theta Notation

• Definition: Let f and g be functions from the set of 
integers or the set of real numbers to the set of real 
numbers. The function                                 if 

                                    and                              . 

• We say that “f is big-Theta of g(x)” and also that “f(x) is 
of order g(x)”   and also that “f(x) and g(x) are of the 
same order.”   

•                                if and only if there exists constants 
C1 , C2 and k such that C1g(x) <  f(x) < C2 g(x)  if x > k.
This follows from the definitions of big-O and big-
Omega.

                           
                             ...                            

                            

 � is the upper 

case version of 

the lower case 

Greek letter �.

Big Theta Notation
   Example: Show that the sum of the first n positive

integers is �(n2).
    Solution: Let f(n) = 1 + 2 + �����+ n.

– We have already shown that f(n) is O(n2).
– To show that f(n) is �(n2), we need a positive constant 

C such that f(n) > Cn2   for sufficiently large n.  
Summing only the terms greater than  n/2 we 
obtain the inequality 

                1 + 2 + �����+ n 	����n/2��+ (��n/2��+  1) + �����+ n
                                            	�����n/2��+ ��n/2��+ �����+ ��n/2� 

                                            "���#$������n/2��+ 1 ) ��n/2� 

	���#$%2)(n/2) = n2/4 

– Taking C = ¼,  f(n) > Cn2      for all positive integers 
n. Hence, f(n) is �(n2), and we can conclude that  f(n) 
is �(n2). 

Big-Theta Notation

  Example: Show that f(x) = 3x2 + 8x log x is 

�#x2).
  Solution:

& 3x2 + 8x log x  ���11x2   for x > 1,                                            

since 0 � 8x log x ��8x2 . 

– Hence, 3x2 + 8x log x is O(x2).
• x2  is clearly     O(3x2  + 8x log x)
& Hence, 3x2 + 8x log x is �#x2).
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Big-Theta Notation

• When                             it must  also be the 
case that

• Note that                               if and only if it 
is the case that                              and   

                         
•                                                        

                     

                   

Big-Theta Estimates for Polynomials

Theorem: Let 
where                                 are real numbers with an �0.
Then f(x) is of order xn (or   �#xn)).
(The proof is an exercise.) 
Example:
The polynomial                                            is order of x5

(or �#x5)).
The polynomial                                                                           

is order of x199 (or �#x199) ).                
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