
CompSci 102
Discrete Math for Computer Science

February 7, 2012

Prof. Rodger

Announcements
• Read for next time Chap. 3.1-3.3
• Homework 3 due Tuesday

• We’ll finish Chapter 2 first today

Chap. 3.1 Algorithms
 Definition: An algorithm is a finite set of precise

instructions for performing a computation or for
solving a problem.

 Example: Describe an algorithm for finding the
maximum value in a finite sequence of integers.

 Solution: Perform the following steps:
1. Set the temporary maximum equal to the first integer in the

sequence.
2. Compare the next integer in the sequence to the temporary

maximum.
– If it is larger than the temporary maximum, set the temporary

maximum equal to this integer.
3. Repeat the previous step if there are more integers. If not, stop.
4. When the algorithm terminates, the temporary maximum is the

largest integer in the sequence.

Specifying Algorithms
• Algorithms can be specified in English or in

pseudocode.
• Pseudocode is an intermediate step between an

English and coding using a programming
language.

• Appendix 3 specifies pseudocode for this book
(similar to Java)

• Pseudocode helps analyze the time required to
solve a problem using an algorithm, independent
of the actual programming language used to
implement algorithm.

Properties of Algorithms
• Input: An algorithm has input values from a

specified set.
• Output: From the input values, the algorithm

produces the output values from a specified set. The
output values are the solution.

• Correctness: An algorithm should produce the
correct output values for each set of input values.

• Finiteness: An algorithm should produce the output
after a finite number of steps for any input.

• Effectiveness: It must be possible to perform each
step of the algorithm correctly and in a finite
amount of time.

• Generality: The algorithm should work for all
problems of the desired form.

Finding the Maximum Element in a
Finite Sequence

• The algorithm in pseudocode:

• Does this algorithm have all the properties
listed on the previous slide?

procedure max(a1, a2, …., an: integers)
max := a1
for i := 2 to n

if max < ai then max := ai

return max{max is the largest element}

Problem
• Describe an algorithm that determines

whether a function from a finite set of
integers to another finite set of integers is
onto.

• A function f from A to B is “onto” iff for
every element b there is an element a with
f(a) = b.

Problem
• Describe an algorithm that determines

whether a function from a finite set of
integers to another finite set of integers is
onto.

• A function f from A to B is “onto” iff for
every element b there is an element a with
f(a) = b.

Solution: Algorithm
• Assume A has n elements, B has m

elements.
• Keep a count for each element in B, setting

counts to 0.
• For each � � � compute � � = � and add

one to b’s count.
• If any b has a count of 0, then not “onto”

Solution: Algorithm
• Assume A has n elements, B has m

elements.
• Keep a count for each element in B, setting

counts to 0.
• For each � � � compute � � = � and add

one to b’s count.
• If any b has a count of 0, then “not onto”,

otherwise “onto”

Some Example Algorithm Problems

• Three classes of problems will look at in
this chapter
1. Searching Problems: finding the position of a

particular element in a list.
2. Sorting problems: putting the elements of a list

into increasing order.
3. Optimization Problems: determining the

optimal value (maximum or minimum) of a
particular quantity over all possible inputs.

Greedy Algorithms
• Optimization problems minimize or maximize some

parameter over all possible inputs.
• Examples:

– Finding a route between two cities with the smallest total
mileage.

– Determining how to encode messages using the fewest possible
bits.

• Solved using a greedy algorithm, which makes the “best”
choice at each step. Making the “best choice” at each step
does not necessarily produce an optimal solution to the
overall problem, but in many instances, it does.

• Try to prove that this approach always produces an optimal
solution, or find a counterexample to show that it does not.

Greedy Algorithms: Making Change

 Example: Design a greedy algorithm for making
change (in U.S. money) of n cents with the
following coins: quarters (25 cents), dimes (10
cents), nickels (5 cents), and pennies (1 cent) , using
the least total number of coins.

 Idea: At each step choose the coin with the largest
possible value that does not exceed the amount of
change left.
1. If n = 67 cents, first choose a quarter leaving

67�25 = 42 cents. Then choose another quarter
leaving 42 �25 = 17 cents

2. Then choose 1 dime, leaving 17 ��10 = 7 cents.

3. Choose 1 nickel, leaving 7 – 5 – 2 cents.

4. Choose a penny, leaving one cent. Choose another
penny leaving 0 cents.

Greedy Algorithms: Making Change

 Example: Design a greedy algorithm for making
change (in U.S. money) of n cents with the
following coins: quarters (25 cents), dimes (10
cents), nickels (5 cents), and pennies (1 cent) , using
the least total number of coins.

 Idea: At each step choose the coin with the largest
possible value that does not exceed the amount of
change left.
1. If n = 67 cents, first choose a quarter leaving

67�25 = 42 cents. Then choose another quarter
leaving 42 �25 = 17 cents

2. Then choose 1 dime, leaving 17 ��10 = 7 cents.

3. Choose 1 nickel, leaving 7 – 5 – 2 cents.

4. Choose a penny, leaving one cent. Choose another
penny leaving 0 cents.

Greedy Change-Making Algorithm
 Solution: Greedy change-making algorithm for n

cents. The algorithm works with any coin
denominations c1, c2, …,cr .

– For the example of U.S. currency, we may have
quarters, dimes, nickels and pennies, with c1 = 25, c2 =
10, c3 = 5, and c4 = 1.

procedure change(c1, c2, …, cr: values of coins, where c1>
c2> … > cr ; n: a positive integer)

for i := 1 to r

 di := 0 [di counts the coins of denomination ci]

while n 	 ci

di := di + 1 [add a coin of denomination ci]

 n = n - ci

[di counts the coins ci]

Proving Optimality for U.S. Coins
• Show that the change making algorithm for U.S. coins is optimal.
 Lemma 11: If n is a positive integer, then n cents in change using

quarters, dimes, nickels, and pennies, using the fewest coins
possible has at most 2 dimes, 1 nickel, 4 pennies, and cannot have
2 dimes and a nickel. The total amount of change in dimes,
nickels, and pennies must not exceed 24 cents.
Proof: By contradiction

– If we had 3 dimes, we could replace them with a quarter and a
nickel.

– If we had 2 nickels, we could replace them with 1 dime.
– If we had 5 pennies, we could replace them with a nickel.
– If we had 2 dimes and 1 nickel, we could replace them with a

quarter.
– The allowable combinations, have a maximum value of 24

cents; 2 dimes and 4 pennies.

Proving Optimality for U.S. Coins
• Show that the change making algorithm for U.S. coins is optimal.
 Lemma 11: If n is a positive integer, then n cents in change using

quarters, dimes, nickels, and pennies, using the fewest coins
possible has at most 2 dimes, 1 nickel, 4 pennies, and cannot have
2 dimes and a nickel. The total amount of change in dimes,
nickels, and pennies must not exceed 24 cents.
Proof: By contradiction

– If we had 3 dimes, we could replace them with a quarter and a
nickel.

– If we had 2 nickels, we could replace them with 1 dime.
– If we had 5 pennies, we could replace them with a nickel.
– If we had 2 dimes and 1 nickel, we could replace them with a

quarter.
– The allowable combinations, have a maximum value of 24

cents; 2 dimes and 4 pennies.

Proving Optimality for U.S. Coins
Theorem: The greedy change-making algorithm for U.S.
coins produces change using the fewest coins possible.

Proof: By contradiction.
1. Assume there is a positive integer n such that change can be

made for n cents using quarters, dimes, nickels, and
pennies, with a fewer total number of coins than given by
the algorithm.

2. Then, q
 ��q where q
 is the number of quarters used in
this optimal way and q is the number of quarters in the
greedy algorithm’s solution. But this is not possible by
Lemma 1, since the value of the coins other than
quarters can not be greater than 24 cents.

3. Similarly, by Lemma 1, the two algorithms must have
the same number of dimes, nickels, and quarters.

Proving Optimality for U.S. Coins
Theorem: The greedy change-making algorithm for U.S.
coins produces change using the fewest coins possible.

Proof: By contradiction.
1. Assume there is a positive integer n such that change can be

made for n cents using quarters, dimes, nickels, and
pennies, with a fewer total number of coins than given by
the algorithm.

2. Then, q
 ��q where q
 is the number of quarters used in
this optimal way and q is the number of quarters in the
greedy algorithm’s solution. But this is not possible by
Lemma 1, since the value of the coins other than
quarters can not be greater than 24 cents.

3. Similarly, by Lemma 1, the two algorithms must have
the same number of dimes, nickels, and quarters.

Greedy Change-Making Algorithm
• Optimality depends on the denominations available.
• For U.S. coins, optimality still holds if we add half

dollar coins (50 cents) and dollar coins (100 cents).
• But if we allow only quarters (25 cents), dimes (10

cents), and pennies (1 cent), the algorithm no longer
produces the minimum number of coins.
– Give an example amount that it doesn’t work for.
– Consider the example of 31 cents. The optimal

number of coins is 4, i.e., 3 dimes and 1 penny.
What does the algorithm output?

Greedy Change-Making Algorithm
• Optimality depends on the denominations available.
• For U.S. coins, optimality still holds if we add half

dollar coins (50 cents) and dollar coins (100 cents).
• But if we allow only quarters (25 cents), dimes (10

cents), and pennies (1 cent), the algorithm no longer
produces the minimum number of coins.
– Give an example amount that it doesn’t work for.
– Consider the example of 31 cents. The optimal

number of coins is 4, i.e., 3 dimes and 1 penny.
What does the algorithm output?

Greedy Scheduling
Example: We have a group of proposed talks with start
and end times. Construct a greedy algorithm to schedule
as many as possible in a lecture hall, under the following
assumptions:
– When a talk starts, it continues till the end.
– No two talks can occur at the same time.
– A talk can begin at the same time that another ends.
– Once we have selected some of the talks, we cannot add a

talk which is incompatible with those already selected
because it overlaps at least one of these previously selected
talks.

– How should we make the “best choice” at each step of the
algorithm? That is, which talk do we pick ?

• The talk that starts earliest among those compatible with already
chosen talks?

• The talk that is shortest among those already compatible?
• The talk that ends earliest among those compatible with already

chosen talks?

Greedy Scheduling
• Picking the shortest talk doesn’t work.

• Can you find a counterexample here?
• But picking the one that ends soonest does

work. The algorithm is specified on the next
page.

Talk
2

Start: 9:00 AM

End: 10:00 AM

Talk
1

Start: 8:00 AM

End :9:45 AM Talk
3
End: 11:00 AM

Start: 9:45 AM

Greedy Scheduling algorithm
 Solution: At each step, choose the talks

with the earliest ending time among the
talks compatible with those selected.

procedure schedule(s1 ��s2 ��… ��sn : start times, e1 ��e2 ��…
��en : end times)

sort talks by finish time and reorder so that e1 ��e2 ��… ��en
S := �
for j := 1 to n

if talk j is compatible with S then
S := S �{talk j}

rreturn S [S is the set of talks scheduled]

Halting Problem
Example: Can we develop a procedure that
takes as input a computer program along with
its input and determines whether the program
will eventually halt with that input.

• Solution: Proof by contradiction.
• Assume that there is such a procedure and call

it H(P,I). The procedure H(P,I) takes as input a
program P and the input I to P.
– H outputs “halt” if it is the case that P will stop

when run with input I.
– Otherwise, H outputs “loops forever.”

Halting Problem
• Since a program is a string of characters,

we can call H(P,P). Construct a procedure
K(P), which works as follows.
– If H(P,P) outputs “loops forever” then K(P)

halts.
– If H(P,P) outputs “halt” then K(P) goes into an

infinite loop printing “ha” on each iteration.

Halting Problem

• Now we call K with K as input, i.e. K(K).
– If the output of H(K,K) is “loops forever” then

K(K) halts. A Contradiction.
– If the output of H(K,K) is “halts” then K(K)

loops forever. A Contradiction.
• Therefore, there can not be a procedure that

can decide whether or not an arbitrary
program halts. The halting problem is
unsolvable.

Section Summary

• Big-O Notation
• Big-O Estimates for Important Functions
• Big-Omega and Big-Theta Notation

Paul Gustav Heinrich Bachmann
(1837-1920)

Donald E. Knuth
(Born 1938)

The Growth of Functions
• Want to know how fast a function grows
• Want to understand how quickly an

algorithm can solve a problem as the size of
the input grows
– compare the efficiency of two different

algorithms for solving the same problem.
– determine whether it is practical to use a

particular algorithm as the input grows.

Big-O Notation
 Definition: Let f and g be functions from

the set of integers or the set of real numbers
to the set of real numbers. We say that f(x)
is O(g(x)) if there are constants C and k
such that

 whenever x > k.
• This is read as “f(x) is big-O of g(x)” or “g

asymptotically dominates f.”

Illustration of Big-O Notation

f(x) is O(g(x)

Important Points about Big-O Notation
• If a pair C,k is found, then there are infinitely

many pairs. We can always make the k or the C
larger and still maintain the inequality

•
– Any pair C
 and k
 where C < C
 and k < k
 is also a

valid pair since
whenever x > k
 > k.

Don’t use “ f(x) = O(g(x))” instead of “ f(x) is
O(g(x)).”
– It is ok to write f(x) � O(g(x)), because O(g(x))

represents the set of functions that are O(g(x)).

Using the Definition of Big-O Notation
 Example: Show that is .
 Solution: Since when x > 1, x < x2 and 1 < x2

– Can take C = 4 and k = 1 to show that

• Alternatively, when x > 2, we have 2x � x2 and 1

< x2. Hence,
when x > 2.

– Can take C = 3 and k = 2 instead.

Using the Definition of Big-O Notation
 Example: Show that is .
 Solution: Since when x > 1, x < x2 and 1 < x2

– Can take C = 4 and k = 1 to show that

• Alternatively, when x > 2, we have 2x � x2 and 1

< x2. Hence,
when x > 2.

– Can take C = 3 and k = 2 instead.

Illustration of Big-O Notation
is

Big-O Notation
• Both and
 are such that and .
 We say that the two functions are of the same order.

• If and h(x) is larger than g(x) for all
positive real numbers, then .

• Note that if for x > k and if
 for all x, then if x > k. Hence,

.

• For many applications, the goal is to select the function g(x)
in O(g(x)) as small as possible (up to multiplication by a
constant, of course).

.

Using the Definition of Big-O Notation
 Example: Show that 7x2 is O(x3).
 Solution: When x > 7, 7x2 < x3. Take C =1

and k = 7 to establish that 7x2 is O(x3).
 (Would C = 7 and k = 1 work?)
 Example: Show that n2 is not O(n).
 Solution: Suppose there are constants C and

k for which n2 � Cn, whenever n > k. Then
(by dividing both sides of n2 � Cn) by n,
then n � C must hold for all n > k. A
contradiction!

Using the Definition of Big-O Notation
 Example: Show that 7x2 is O(x3).
 Solution: When x > 7, 7x2 < x3. Take C =1

and k = 7 to establish that 7x2 is O(x3).
 (Would C = 7 and k = 1 work?)
 Example: Show that n2 is not O(n).
 Solution: Suppose there are constants C and

k for which n2 � Cn, whenever n > k. Then
(by dividing both sides of n2 � Cn) by n,
then n � C must hold for all n > k. A
contradiction!

Big-O Estimates for Polynomials

Example: Let
where are real numbers with an ��.

Then f(x) is O(xn).
Proof: |f(x)| = |anxn + an-1 xn-1 + ��� + a1x1 + a1|
 ��|an|xn + |an-1| xn-1 + ··· + |a1|x1 + |a1|
 = xn (|an| + |an-1| /x + ··· + |a1|/xn-1 + |a1|/ xn)
 ��xn (|an| + |an-1| + ··· + |a1|+ |a1|)
• Take C = |an| + |an-1| + ··· + |a1|+ |a1| and k = 1. Then f(x)

is O(xn).
• The leading term anxn of a polynomial dominates its

growth.

Uses triangle inequality, an
exercise in Section 1.8.

 Assuming x > 1

Big-O Estimates for some Important
Functions

 Example: Use big-O notation to estimate
the sum of the first n positive integers.

 Solution:

 Example: Use big-O notation to estimate
the factorial function

 Solution:

Continued �

Big-O Estimates for some Important
Functions

 Example: Use big-O notation to estimate
the sum of the first n positive integers.

 Solution:

 Example: Use big-O notation to estimate
the factorial function

 Solution:

Continued �

Big-O Estimates for some Important
Functions

 Example: Use big-O notation to estimate log n!

 Solution: Given that (previous slide)
 then .
 Hence, log(n!) is O(n����(n)) taking C = 1 and

k = 1.

Big-O Estimates for some Important
Functions

 Example: Use big-O notation to estimate log n!

 Solution: Given that (previous slide)
 then .
 Hence, log(n!) is O(n����(n)) taking C = 1 and

k = 1.

Display of Growth of Functions

Note the difference in behavior of functions as n
gets larger

Useful Big-O Estimates Involving
Logarithms, Powers, and Exponents

• If d > c > 1, then
 nc is O(nd), but nd is not O(nc).
• If b > 1 and c and d are positive, then
 (logb n)c is O(nd), but nd is not O((logb n)c).
• If b > 1 and d is positive, then
 nd is O(bn), but bn is not O(nd).
• If c > b > 1, then
 bn is O(cn), but cn is not O(bn).

Combinations of Functions
• If f1 (x) is O(g1(x)) and f2 (x) is O(g2(x)) then
 (f1 + f2)(x) is O(max(|g1(x) |,|g2(x) |)).

– See next slide for proof

• If f1 (x) and f2 (x) are both O(g(x)) then
 (f1 + f2)(x) is O(g(x)).

– See text for argument
• If f1 (x) is O(g1(x)) and f2 (x) is O(g2(x)) then
 (f1 f2)(x) is O(g1(x)g2(x)).

– See text for argument

Combinations of Functions
• If f1 (x) is O(g1(x)) and f2 (x) is O(g2(x)) then
 (f1 + f2)(x) is O(max(|g1(x) |,|g2(x) |)).

– By the definition of big-O notation, there are constants C1,C2 ,k1,k2 such that

| f1 (x) ��C1|g1(x) | when x > k1 and f2 (x) ��C2|g2(x) | when x > k2 .
– |(f1 + f2)(x)| = |f1(x) + f2(x)|

 ��|f1 (x)| + |f2 (x)| by the triangle inequality |a + b| �����������

– |f1 (x)| + |f2 (x)| ��C1|g1(x) | + C2|g2(x) |
 ��C1|g(x) | + C2|g(x) | where g(x) = max(|g1(x)|,|g2(x)|)

 = (C1 + C2) |g(x)|
 = C|g(x)| where C = C1 + C2

– Therefore |(f1 + f2)(x)| ��C|g(x)| whenever x > k, where k = max(k1,k2).

Ordering Functions by Order of Growth

• Put the functions below in order so that each function is big-O
of the next function on the list.

• f1(n) = (1.5)n

• f2(n) = 8n3+17n2 +111

• f3(n) = (log n)2
• f4(n) = 2n

• f5(n) = log (log n)

• f6(n) = n2 (log n)3

• f7(n) = 2n (n2 +1)

• f8(n) = n3+ n(log n)2

• f9(n) = 10000

• f10(n) = n!

We solve this exercise by successively finding the function that grows
slowest among all those left on the list.

• f9(n) = 10000 (constant, does not increase with n)

•f5(n) = log (log n) (grows slowest of all the others)

•f3(n) = (log n)2 (grows next slowest)

•f6(n) = n2 (log n)3 (next largest, (log n)3 factor smaller than any power of n)

•f2(n) = 8n3+17n2 +111 (tied with the one below)

•f8(n) = n3+ n(log n)2 (tied with the one above)

•f1(n) = (1.5)n (next largest, an exponential function)

•f4(n) = 2n (grows faster than one above since 2 > 1.5)

•f7(n) = 2n (n2 +1) (grows faster than above because of the n2 +1 factor)

•f10(n) = 3n (n! grows faster than cn for every c)

Ordering Functions by Order of Growth

• Put the functions below in order so that each function is big-O
of the next function on the list.

• f1(n) = (1.5)n

• f2(n) = 8n3+17n2 +111

• f3(n) = (log n)2
• f4(n) = 2n

• f5(n) = log (log n)

• f6(n) = n2 (log n)3

• f7(n) = 2n (n2 +1)

• f8(n) = n3+ n(log n)2

• f9(n) = 10000

• f10(n) = n!

We solve this exercise by successively finding the function that grows
slowest among all those left on the list.

• f9(n) = 10000 (constant, does not increase with n)

•f5(n) = log (log n) (grows slowest of all the others)

•f3(n) = (log n)2 (grows next slowest)

•f6(n) = n2 (log n)3 (next largest, (log n)3 factor smaller than any power of n)

•f2(n) = 8n3+17n2 +111 (tied with the one below)

•f8(n) = n3+ n(log n)2 (tied with the one above)

•f1(n) = (1.5)n (next largest, an exponential function)

•f4(n) = 2n (grows faster than one above since 2 > 1.5)

•f7(n) = 2n (n2 +1) (grows faster than above because of the n2 +1 factor)

•f10(n) = 3n (n! grows faster than cn for every c)

Big-Omega Notation
Definition: Let f and g be functions from the set of integers or
the set of real numbers to the set of real numbers. We say that

 if there are constants C and k such that
 when x > k.
• We say that “f(x) is big-Omega of g(x).”
• Big-O gives an upper bound on the growth of a function,

while Big-Omega gives a lower bound.
• f(x) is �(g(x)) if and only if g(x) is O(f(x)). This follows from

the definitions.

� is the upper case version of the lower

case Greek letter �.

Big-Omega Notation
 Example: Show that

is where .
 Solution: for

all positive real numbers x.
– Is it also the case that is

Big-Omega Notation
 Example: Show that

is where .
 Solution: for

all positive real numbers x.
– Is it also the case that is

Big-Theta Notation

• Definition: Let f and g be functions from the set of
integers or the set of real numbers to the set of real
numbers. The function if

 and .

• We say that “f is big-Theta of g(x)” and also that “f(x) is
of order g(x)” and also that “f(x) and g(x) are of the
same order.”

• if and only if there exists constants
C1 , C2 and k such that C1g(x) < f(x) < C2 g(x) if x > k.
This follows from the definitions of big-O and big-
Omega.

 ...

 � is the upper

case version of

the lower case

Greek letter �.

Big Theta Notation
 Example: Show that the sum of the first n positive

integers is �(n2).
 Solution: Let f(n) = 1 + 2 + �����+ n.

– We have already shown that f(n) is O(n2).
– To show that f(n) is �(n2), we need a positive constant

C such that f(n) > Cn2 for sufficiently large n.
Summing only the terms greater than n/2 we
obtain the inequality

 1 + 2 + �����+ n 	����n/2��+ (��n/2��+ 1) + �����+ n
 	�����n/2��+ ��n/2��+ �����+ ��n/2�

 "���#$������n/2��+ 1) ��n/2�

	���#$%2)(n/2) = n2/4

– Taking C = ¼, f(n) > Cn2 for all positive integers
n. Hence, f(n) is �(n2), and we can conclude that f(n)
is �(n2).

Big-Theta Notation

 Example: Show that f(x) = 3x2 + 8x log x is

�#x2).
 Solution:

& 3x2 + 8x log x ���11x2 for x > 1,

since 0 � 8x log x ��8x2 .

– Hence, 3x2 + 8x log x is O(x2).
• x2 is clearly O(3x2 + 8x log x)
& Hence, 3x2 + 8x log x is �#x2).

Big-Theta Notation

 Example: Show that f(x) = 3x2 + 8x log x is

�#x2).
 Solution:

& 3x2 + 8x log x ���11x2 for x > 1,

since 0 � 8x log x ��8x2 .

– Hence, 3x2 + 8x log x is O(x2).
• x2 is clearly O(3x2 + 8x log x)
& Hence, 3x2 + 8x log x is �#x2).

Big-Theta Notation

• When it must also be the
case that

• Note that if and only if it
is the case that and

•

Big-Theta Estimates for Polynomials

Theorem: Let
where are real numbers with an �0.
Then f(x) is of order xn (or �#xn)).
(The proof is an exercise.)
Example:
The polynomial is order of x5

(or �#x5)).
The polynomial

is order of x199 (or �#x199)).

Big-Theta Estimates for Polynomials

Theorem: Let
where are real numbers with an �0.
Then f(x) is of order xn (or �#xn)).
(The proof is an exercise.)
Example:
The polynomial is order of x5

(or �#x5)).
The polynomial

is order of x199 (or �#x199)).

