# CompSci 102 Discrete Math for Computer Science

 $\begin{bmatrix} 1 & 1 \\ 0 & 2 \\ 1 & 3 \end{bmatrix}$ 

February 7, 2012

Prof. Rodger

Slides modified from Rosen

#### Cardinality

- **Definition**: A set that is either finite or has the same cardinality as the set of positive integers (**Z**<sup>+</sup>) is called *countable*. A set that is not countable is *uncountable*.
- The set of real numbers  $\mathbf{R}$  is an uncountable set.
- When an infinite set is countable (*countably infinite*) its cardinality is ℵ<sub>0</sub> (where ℵ is aleph, the 1<sup>st</sup> letter of the Hebrew alphabet). We write |S| = ℵ<sub>0</sub> and say that S has cardinality "aleph null."

# Chap 2.5-2.6 Cardinality

**Definition**: The *cardinality* of a set *A* is equal to the cardinality of a set *B*, denoted

|A| = |B|,

if and only if there is a one-to-one correspondence (*i.e.*, a bijection) from *A* to *B*.

- If there is a one-to-one function (*i.e.*, an injection) from A to B, the cardinality of A is less than or the same as the cardinality of B and we write  $|A| \le |B|$ .
- When  $|A| \le |B|$  and A and B have different cardinality, we say that the cardinality of A is less than the cardinality of B and write |A| < |B|.

# Showing that a Set is Countable

- An infinite set is countable if and only if it is possible to list the elements of the set in a sequence (indexed by the positive integers).
- The reason for this is that a one-to-one correspondence *f* from the set of positive integers to a set *S* can be expressed in terms of a sequence a<sub>1</sub>, a<sub>2</sub>,..., a<sub>n</sub>,... where a<sub>1</sub> = f(1), a<sub>2</sub> = f(2),..., a<sub>n</sub> = f(n),...

# Hilbert's Grand Hotel



#### David Hilbert

The Grand Hotel (example due to David Hilbert) has countably infinite number of rooms, each occupied by a guest. We can always accommodate a new guest at this hotel. How is this possible?

**Explanation**: Because the rooms of Grand Hotel are countable, we can list them as Room 1, Room 2, Room 3, and so on. When a new guest arrives, we move the guest in Room 1 to Room 2, the guest in Room 2 to Room 3, and in general the guest in Room *n* to Room n + 1, for all positive integers *n*. This frees up Room 1, which we assign to the new guest, and all the current guests still have rooms.



The hotel can also accommodate a countable number of new guests, all the guests on a countable number of buses where each bus contains a countable number of guests (see exercises).

# Showing that a Set is Countable

**Example 1:** Show that the set of positive even integers *E* is a countable set.

Solution: Let f(x) = 2x. 1 2 3 4 5 6 ..... 1 2 4 6 8 10 12 .....

Then f is a bijection from N to E since f is both one-toone and onto. To show that it is one-to-one, suppose that f(n) = f(m). Then 2n = 2m, and so n = m. To see that it is onto, suppose that t is an even positive integer. Then t = 2k for some positive integer k and f(k) = t.

#### Showing that a Set is Countable

**Example 2:** Show that the set of integers **Z** is countable.

#### The Positive Rational Numbers are Countable

- **Definition**: A *rational number* can be expressed as the ratio of two integers p and q such that  $q \neq 0$ .
  - $-\frac{3}{4}$  is a rational number
  - $-\sqrt{2}$  is not a rational number.

**Example 3**: Show that the positive rational numbers are countable.

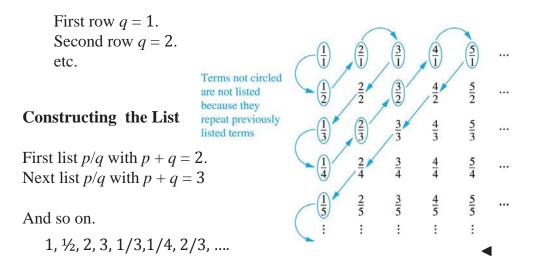
**Solution**: The positive rational numbers are countable since they can be arranged in a sequence:

 $\rightarrow$ 

 $r_1, r_2, r_3, \dots$ The next slide shows how this is done.

◀

#### The Positive Rational Numbers are Countable



### Strings

**Example 4**: Show that the set of finite strings *S* over a finite alphabet *A* is countably infinite. Assume an alphabetical ordering of symbols in A

#### The set of all Java programs is countable.

**Example 5**: Show that the set of all Java programs is countable.

#### The Real Numbers are Uncountable Georg Cantor (1845-1918)



Example: Show that the set of real numbers is uncountable.

- **Solution**: The method is called the Cantor diagonalization argument, and is a proof by contradiction.
- 1. Suppose **R** is countable. Then the real numbers between 0 and 1 are also countable (any subset of a countable set is countable )
- 2. The real numbers between 0 and 1 can be listed in order  $r_1, r_2, r_3, \dots$
- 3. Let the decimal representation of this listing be

| $r_1 = 0.d_{11}d_{12}d_{13}d_{14}d_{15}d_{16} \dots$ | 9 |
|------------------------------------------------------|---|
| $r_2 = 0.d_{21}d_{22}d_{23}d_{24}d_{25}d_{26}\dots$  |   |
| $r_3 = 0.d_{31}d_{32}d_{33}d_{34}d_{35}d_{36}\dots$  | ł |
|                                                      |   |

 $r = .r_1 r_2 r_3 r_4 ...$ 

- 4. Form a new real number with the decimal expansion where  $r_i = 3$  if  $d_{ii} \neq 3$  and  $r_i = 4$  if  $d_{ii} = 3$
- 5. *r* is not equal to any of the  $r_1, r_2, r_3, ...$  Because it differs from  $r_i$  in its *i*th position after the decimal point. Therefore there is a real number between 0 and 1 that is not on the list since every real number has a unique decimal expansion. Hence, all the real numbers between 0 and 1 cannot be listed, so the set of real numbers between 0 and 1 is uncountable.
- 6. Since a set with an uncountable subset is uncountable (an exercise), the ◀ set of real numbers is uncountable.

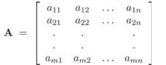
◀

# **Matrices**

- Matrices are useful discrete structures that can be used in many ٠ ways. For example, they are used to:
  - describe certain types of functions known as linear transformations.
  - Express which vertices of a graph are connected by edges (see Chapter 10).
- In later chapters, we will see matrices used to build models of:
  - Transportation systems.
  - Communication networks.
- Algorithms based on matrix models will be presented in later chapters.
- Here we cover the aspect of matrix arithmetic that will be needed later.

# Notation

• Let *m* and *n* be positive integers and let



- $\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix}$  The *i*th row of **A** is the 1 × *n* matrix [*a<sub>i1</sub>*, *a<sub>i2</sub>*,...,*a<sub>in</sub>*]. The *i*th column of **A** is the  $m \times 1$  matrix:
- The (*i*,*j*)th *element* or *entry* of **A** is the  $a_{1j}$ a<sub>2j</sub> . element  $a_{ij}$ . We can use  $\mathbf{A} = [a_{ij}]$  to denote the matrix with its (i,j)th element equal to  $a_{ij}$ .

# Matrix

#### **Definition**: A *matrix* is a rectangular array of numbers. A matrix with *m* rows and *n* columns is called an $m \times n$ matrix.

- The plural of matrix is *matrices*.
- A matrix with the same number of rows as columns is called square.
- Two matrices are *equal* if they have the same number of rows and the same number of columns and the corresponding entries in every position are equal.
  - $3 \times 2$  matrix
- $\begin{bmatrix} 1 & 1 \\ 0 & 2 \\ 1 & 3 \end{bmatrix}$

# Matrix Arithmetic: Addition

**Definition**: Let  $\mathbf{A} = [a_{ij}]$  and  $\mathbf{B} = [b_{ij}]$  be *m n* matrices. The sum of A and B, denoted by A + **B**, is the *m* n matrix that has  $a_{ij} + b_{ij}$  as its (i,j)th element. In other words,  $\mathbf{A} + \mathbf{B} =$  $[a_{ii} + b_{ii}].$ 

#### **Example**:

| 1 | 0 | -1 |   | 3  | 4  | -1 | ] | 4 | 4       | -2                                          |
|---|---|----|---|----|----|----|---|---|---------|---------------------------------------------|
| 2 | 2 | -3 | + | 1  | -3 | 0  | = | 3 | $^{-1}$ | -3                                          |
| 3 | 4 | 0  |   | -1 | 1  | 2  |   | 2 | 5       | $\begin{bmatrix} -2\\ -3\\ 2 \end{bmatrix}$ |

Note that matrices of different sizes can NOT be added.

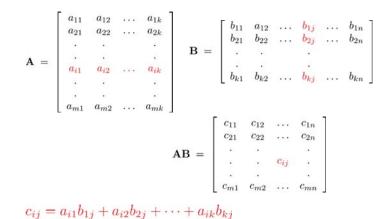
# Matrix Multiplication

**Definition**: Let **A** be an  $n \times k$  matrix and **B** be a  $k \times n$ matrix. The *product* of **A** and **B**, denoted by **AB**, is the  $m \times n$  matrix that has its (i,j)th element equal to the sum of the products of the corresponding elements from the *i*th row of **A** and the *j*th column of **B**. In other words, if  $\mathbf{AB} = [c_{ij}]$  then  $c_{ij} = a_{i1}b_{1j} + a_{i2}b_{2j} + ... + a_{kj}b_{2j}$ . **Example:**  $\begin{bmatrix} 1 & 0 & 4 \\ 2 & 1 & 1 \\ 3 & 1 & 0 \\ 0 & 2 & 2 \end{bmatrix} \begin{bmatrix} 2 & 4 \\ 1 & 1 \\ 3 & 0 \end{bmatrix} = \begin{bmatrix} 14 & 4 \\ 8 & 9 \\ 7 & 13 \\ 8 & 2 \end{bmatrix}$ 

The product of two matrices is undefined when the number of columns in the first matrix is not the same as the number of rows in the second.

## Illustration of Matrix Multiplication

• The Product of  $\mathbf{A} = [\mathbf{a}_{ij}]$  and  $\mathbf{B} = [\mathbf{b}_{ij}]$ 



#### Is Matrix Multiplication Commutative

**Example:** Let  $\mathbf{A} = \begin{bmatrix} 1 & 1 \\ 2 & 1 \end{bmatrix} \qquad \mathbf{B} = \begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix}$ 

Does AB = BA?

#### Identity Matrix and Powers of Matrices

**Definition**: The *identity matrix of order n* is the  $m \times n$  matrix  $\mathbf{I}_n = [\delta_{ij}]$ , where  $\delta_{ij} = 1$  if i = j and  $\delta_{ij} = 0$  if  $i \neq j$ .

$$\mathbf{I}_{n} = \begin{bmatrix} 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 1 \end{bmatrix} \qquad \mathbf{AI}_{n} = \mathbf{I}_{m}\mathbf{A} = \mathbf{A}$$
when  $\mathbf{A}$  is an  $m \times n$  matrix

Powers of square matrices can be defined. When A is an  $n \times n$  matrix, we have:

$$\mathbf{A}^0 = \mathbf{I}_n \qquad \mathbf{A}^r = \underbrace{\mathbf{A}\mathbf{A}\mathbf{A}\cdots\mathbf{A}}_{r \text{ times}}$$

#### **Transposes of Matrices**

**Definition**: Let  $\mathbf{A} = [a_{ij}]$  be an  $m \times n$  matrix. The *transpose* of  $\mathbf{A}$ , denoted by  $\mathbf{A}^{t}$ , is the  $n \times m$  matrix obtained by interchanging the rows and columns of  $\mathbf{A}$ .

If  $\mathbf{A}^{t} = [b_{ij}]$ , then  $\mathbf{b}_{ij} = \mathbf{a}_{ji}$  for i = 1, 2, ..., nand j = 1, 2, ..., m. The transpose of the matrix  $\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}$  is the matrix  $\begin{bmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{bmatrix}$ .