Announcements

) e Read for next time Chap. 4.4-4.6
CompSci 102 P

Discrete Math for CompUter Science Finish Chapter 3 first, then start Chapter 4,
number theory

February 14, 2012

Prof. Rodger

Slides modified from Rosen

Chap 3.3 - The Complexity of

Algorithms The Complexity of Algorithms
« Given an algorithm, how efficient is this algorithm for * In this course, focus on time complexity.
solving a problem given input of a particular size? « Measure time complexity in terms of the
— How much time does this algorithm use to solve a problem? number of operations an algorithm uses
— How much computer memory does this algorithm use to solve Use big-O and big-Theta notation to estimate
a problem? the time complexity
* time complexity - analyze the time the algorithm uses to « Is it practical to use this algorithm to solve
solve the problem given input of a particular size problems with input of a particular size?
* space complexity - analyze the computer memory the « Compare the efficiency of different algorithms
algorithm uses to solve the problem, given input of a for solving the same problem.

particular size

Time Complexity

» For time complexity, determine the number of
operations, such as comparisons and arithmetic
operations (addition, multiplication, etc.).

* Ignore minor details, such as the “house
keeping” aspects of the algorithm.

» Focus on the worst-case time complexity of an
algorithm. Provides an upper bound.

* More difficult to determine the average case
time complexity of an algorithm (average
number of operations over all inputs of a
particular size)

Complexity Analysis of Algorithms

Example: Describe the time complexity of the algorithm
for finding the maximum element in a finite sequence.

procedure max(ay, a,,, a,. integers)
max :=a,
fori:=2ton
if max < a; then max := g;
return max{max is the largest element}

Solution: Count the number of comparisons.
» Compare max < g; n — 1 times.
e when i incremented, compare if /< n. n — 1 times
* One last comparison for i>n.
* 2(n—1)+1=2n—1 comparisons are made.

Hence, the time complexity of the algorithm is ®(n).

Complexity Analysis of Algorithms

Example: Describe the time complexity of the algorithm
for finding the maximum element in a finite sequence.

procedure max(ay, a,,, a,. integers)
max :=a,
fori:=2ton

if max < a; then max := g;
return max{max is the largest element}

Solution: Count the number of comparisons.

Worst-Case Complexity of Linear Search

procedure linear search(x:integer,
ay, &y, ...,a,: distinct integers)

=1

while (i < nand x # &)
=i+1

if i < nthen location := i

else location := 0

return location{location is the subscript of the term that
equals x, or is 0 if x is not found}

Solution: Count the number of comparisons.

Worst-Case Complexity of Linear Search

procedure linear search(x:integer,
ay, &y, ...,a, distinct integers)

=1

while (i < nand x # &)
=i+1

if i < nthen location := i

else location := 0

return location{location is the subscript of the term that
equals x, or is 0 if x is not found}

Solution: Count the number of comparisons.
* At each step two comparisons are made; i < nand X # a;.
« end of loop, one comparison i < n is made.
* After loop, one more i < n comparison is made.
If x = a;, 2i + 1 comparisons are used. If x is not on the list, 2n + 1
comparisons are made. One comparison to exit loop.
Worst case 2n + 2 comparisons, complexity is ®(n).

Average-Case Complexity of Linear Search

Example: average case performance of linear search
Solution: Assume the element is in the list and that
the possible positions are equally likely.

By the argument on the previous slide, if x=a,, the
number of comparisonsis 2i+ 1.

345+T+...+(2n+1) _ 2(142434...4n)+n
. - n.

n(n41)
8 7 o =9

i

Hence, the average-case complexity of linear search is ©(n).

Average-Case Complexity of Linear Search

Example: average case performance of linear search

Solution; Assume the element is in the list and that
the possible positions are equally likely.

Worst-Case Complexity of Binary Search

procedure binary search(x: integer, a;,a,,..., a,: increasing integers)
i ;=1 {iis the left endpoint of interval}
j :=n{j isright endpoint of interval}
while i <j
m:= (i +])12]
ifx>a,theni:=m+1
elsej:=m
if X = g; then location := i
else location := 0
return location{location is the subscript i of the term a; equal to x, or
0 if x is not found}

Solution: Assume n = 2k elements. Note that k = log n.

Worst-Case Complexity of Bubble Sort

Worst-Case Complexity of Binary Search

procedure binary search(x: integer, a;,a,,..., a,: increasing integers) .
i := 1 {i is the left endpoint of interval} procedure bubblesort(a,,...,a,: real numbers
j :=n{j isright endpoint of interval} with n > 2)
while i <] .
m = (i +)/2] fori:=1ton—1
ifx>a,theni:=m+1 forj::lton—i
elsej:=m . .
if x = & then location := i if a; >a;,, then interchange a; and a;,,
else location := 0 ; A ;
. o L aq,..., a, IS NOw in increasing order
return location{location is the subscript i of the term &; equal to x, or { 1 n 9 }

0 if x is not found}

Solution: Assume n = 2k elements. Note that k = log n. Solution

» Two comparisons are made at each stage; i<j,andx>a,,.
e Size of list is 2k then 2%1. then 2k2Z ... then 21 =2,
e At the last step, list size is 2° = 1 and single last element compared.

* Hence, at most 2k + 2 = 2 log n + 2 comparisons are made.
* Therefore, the time complexity is ® (log n), better than linear search.

Worst-Case Complexity of Insertion Sort

Worst-Case Complexity of Bubble Sort

procedure bubblesort(a,,...,a,: real numbers procedure insertion sort(a,,....ay
. real numbers with n > 2)
with n > 2) forj:=2ton
fori:=1ton—1 =1
. . while a; > g
forj:=1ton —i i=i+1
ifa >a. : _ _ m:i=a
if ?1] aj+1_th_en mte_rchange a; and aj,4 fork=0t0j —i—1
{a,,..., a, is now in increasing order} ajy = Ay
a:=m

Solution: n—1 passes through list. pass n — i comparisons

n(n—1) Solution:
n-1)+n-2)+...+24+1 = ==
The worst-case complexity of bubble sort is ®(n?) since
n(n—1) e 12 1y,
2 2 gl

Worst-Case Complexity of Insertion Sort

procedure insertion sort(a,,...,a,:
real numbers with n > 2)
forj:=2ton
i=1
while a; > g
=i+l
m =g
fork:=0toj —i—1
Ao *= g
a;:=m

Solution: The total number of comparisons are:

nn+1)
2
Therefore the complexity is ®(n?).

2+3+ ..+n = 1

Complexity of Matrix Multiplication

Example: How many additions of integers and
multiplications of integers are used by the
matrix multiplication algorithm to multiply
two n xn matrices.

Solution

Matrix Multiplication Algorithm

* matrix multiplication algorithm; C = A B where C is an

mx n matrix that is the product of the m x k matrix A and
the k xn matrix B.

procedure matrix multiplication(A,B: matrices)
fori:=1tom

forj:=1ton
c;:=0 A = [a;;] is a m x k matrix
for g :=1tok B = [b;;] is a k X n matrix
Cij -= Cij + &g Dy

return C{C = [c;] is the product of A and B}

Complexity of Matrix Multiplication

Example: How many additions of integers and
multiplications of integers are used by the
matrix multiplication algorithm to multiply
two n x n matrices.

Solution: There are n? entries in the product.
Each entry requires n mults and n — 1 adds.
Hence, n3 mults and n?(n — 1) adds.
matrix multiplication is O(n3).

Matrix-Chain Multiplication Matrix-Chain Multiplication

» Compute matrix-chain A;A, - -A, with fewest » Compute matrix-chain A;A, - -A, with fewest
multiplications, where A;,A,, -+, A, arem;x m,, m, X multiplications, where A;,A,, -+, A, arem;x m,, m, X
My, -+ - My My, integer matrices. Matrix mulltlpllcatlon My, * - My s My, integer matrices. Matrix mulltlpllcatlon
is associative. is associative.

Example: In which order should the integer matrices Example: In which order should the integer matrices
A AA, - where A, is 30 x20 A,20 x40, A;40 x10 - A AA, - where A, is 30 x20 A, 20 x40, A;40 x10 -
be multlplled? Solution: two possﬁ)le ways for A 1AA. be multlplled? Solution: two possﬁ)le ways for A 1AA.

- A(AA): AA; takes 20-40-10 =8000 mults A1
by the 20 % 10 matrix A,A; takes 30 - 20 - 10 = 6000
mults. Total number is 8000 + 6000 = 14,000.

)Ag: AA, takes 30 - 20 - 40 = 24,000 mults.
A, Dy A, takes 30 - 40 - 10 = 12,000 mults. Total
s 24 000 + 12,000 = 36,000.

So the first method is best.

—(AA

Understanding the Complexity of Understanding the Complexity of
Algorithms Algorithms
TABLE 1 Commonly Used Terminology for the
Complexity of Algorithms. TABLE 2 The Computer Time Used by Algorithms.
Comp loxi ty Termino Iogy Problem Size Bit Operations Used
n logn n nlogn n? 2" n!
©(1) Constant complexity
o Loacitlii fisd 10 3x107s 107105 3x107105 1079 108 3x1077s
(logn) Ogarithmic complexicy 102 7x10°Ms 10%s 7x10%s m— s 4x10ly =
©(n) Linear complexity 10° 10107105 1078 1x1077s 1075 g E
O(n log n) Linearithmic complexity IU: 13210710 1077y %1070 1073 #

b . . 10° 1.7x 107105 10705 2x 1075 0.1s o #
O(n”) Polynomial complexity 105 2%10-19s 10-5s 2x10~%s 0.17min * *
O(b"), where b > 1 Exponential complexity
o) Factoridl complexity Times of more than 1010 years are indicated

with an *.

Complexity of Problems

Tractable Problem: There exists a polynomial time algorithm to
solve this problem. These problems are said to belong to the
Class P.

Intractable Problem: There does not exist a polynomial time
algorithm to solve this problem

Unsolvable Problem : No algorithm exists to solve this problem,
e.g., halting problem.

Class NP: Solution can be checked in polynomial time. But no
polynomial time algorithm has been found for finding a solution
to problems in this class.

NP Complete Class: If you find a polynomial time algorithm for
one member of the class, it can be used to solve all the problems
in the class.

P Versus NP Problem &

Stephen Cook
(Born 1939)
The P versus NP problem asks whether the class P = NP? Are there problems
whose solutions can be checked in polynomial time, but can not be solved in
polynomial time?
— Note that just because no one has found a polynomial time algorithm is
different from showing that the problem can not be solved by a
polynomial time algorithm.

If a polynomial time algorithm for any of the problems in the NP complete
class were found, then that algorithm could be used to obtain a polynomial
time algorithm for every problem in the NP complete class.

— Satisfiability (in Section 1.3) is an NP complete problem.
It is generally believed that P#=NP since no one has been able to find a
polynomial time algorithm for any of the problems in the NP complete
class.
The problem of P versus NP remains one of the most famous unsolved
problems in mathematics (including theoretical computer science). The
Clay Mathematics Institute has offered a prize of $1,000,000 for a
solution.

