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Announcements
• Read for next time Chap. 4.4-4.6

• Finish Chapter 3 first, then start Chapter 4, 
number theory

Chap 3.3 - The Complexity of 
Algorithms

• Given an algorithm, how efficient is this algorithm for 
solving a problem given input of a particular size? 
– How much time does this algorithm use to solve a problem?
– How much computer memory does this algorithm use to solve 

a problem?
• time complexity  - analyze the time the algorithm uses to 

solve the problem given input of a particular size
• space complexity  - analyze the computer memory the 

algorithm uses to solve the problem, given input of a 
particular size

The Complexity of Algorithms

• In this course,  focus on time complexity. 
• Measure time complexity in terms of the 

number of operations an algorithm uses
• Use big-O and big-Theta notation to estimate 

the time complexity
• Is it practical to use this algorithm to solve 

problems with input of a particular size?
• Compare the efficiency of different algorithms 

for solving the same problem.



Time Complexity
• For time complexity,  determine the number of 

operations, such as comparisons and arithmetic 
operations (addition, multiplication, etc.). 

• Ignore minor details, such as the “house 
keeping” aspects of the algorithm.

• Focus on the worst-case time complexity of an 
algorithm. Provides an upper bound.

• More difficult to determine the average case 
time complexity of an algorithm (average 
number of operations over all inputs of a 
particular size)

Complexity Analysis of Algorithms
     Example: Describe the time complexity of the algorithm    

for finding   the maximum element in a  finite sequence.

    

                                     

procedure max(a1, a2, …., an: integers)
    max := a1
    for i := 2 to n
         if max < ai then max := ai
    return max{max is the largest element}
    

Solution: Count the number of comparisons.
• Compare max < ai           n 1 times. 
•   when i incremented, compare if i n.           n  
•   One last comparison for i > n.               
•   2(n n    Hence, the time complexity of the algorithm is  n).

Worst-Case Complexity of Linear Search
   procedure linear search(x:integer, 

a1, a2, …,an: distinct integers)
i := 1 
while (i n and x ai)

i := i + 1 
if i n then location := i
else location := 0 
return location{location is the subscript of the term that 

equals x, or is 0 if x is not found}

Solution: Count the number of comparisons.
• At each step two comparisons are made; i n and x ai .
• end of loop, one comparison i n is made.
• After  loop, one more i n comparison is made. 

If x = ai , 2i + 1 comparisons are used. If x is not on the list, 2n + 1 comparisons are made.  One comparison to exit loop.
Worst case 2n + 2 comparisons,  complexity n).

Average-Case Complexity of Linear Search

Example: average case performance of linear search 
Solution: Assume the element is in the list and that 

the possible positions are equally likely. 
By the argument on the previous slide, if x = ai , the 

number of comparisons is       2i + 1.        Hence,  the average-case complexity of linear search is (n



Worst-Case Complexity of Binary Search 
   
   procedure binary search(x: integer, a1,a2,…, an: increasing integers)
    i := 1 {i is the left endpoint of interval}
    j := n {j is right endpoint of interval}
    while i < j
           m := (i + j)/2
           if x > am then i := m + 1
           else j := m
     if x = ai then location := i
     else location := 0
     return location{location is the subscript i of the term ai equal to x, or 0 if x is not found} 

Solution: Assume n = 2k elements. Note that k = log n.  
• Two comparisons are made at each stage;   i < j, and x > am .
• Size of list is 2k , then  2k-1.  then  2k-2 , … then 21 = 2.
• At the last step, list size is 20 = 1 and single last element compared.  
• Hence, at most 2k + 2 = 2 log n + 2 comparisons are made. 
• n), better than linear search. 

Worst-Case Complexity of Bubble Sort
   procedure bubblesort(a1,…,an: real numbers 

                            with n 2)
    for i := 1 to n 1 
        for j := 1 to n i
             if aj >aj+1 then interchange aj and aj+1

{a1,…, an is now in increasing order}

Solution: n 1 passes through list. pass n i comparisons

The worst-case complexity of bubble sort is  n2) since       
.

Worst-Case Complexity of Insertion Sort
   procedure insertion sort(a1,…,an:

                real numbers with n 2)
     for j := 2 to n
         i := 1 
         while aj > ai
              i := i + 1 
          m := aj
          for k := 0 to j i 1 
               aj-k := aj-k-1
           ai := m

          
    

Solution: The total number of comparisons are:

n2).
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Matrix Multiplication Algorithm
• matrix multiplication algorithm; C = A B where C is an 

m    n matrix that is the product of the m    k matrix A and 
the   k    n matrix B.

procedure matrix multiplication(A,B: matrices)                       
    for i := 1 to m               
        for j := 1 to n
              cij := 0 
               for q := 1 to k
                   cij := cij + aiq bqj 
return C{C = [cij] is the product of A and B}



Complexity of Matrix Multiplication

Example: How many additions of integers and 
multiplications of integers are used by the 
matrix multiplication algorithm to multiply 
two n n matrices.
Solution: There are n2  entries in the product.      Each entry requires n mults and n adds. Hence, n3  mults and n2(n adds.      matrix multiplication is O(n3).  

Matrix-Chain Multiplication
• Compute matrix-chain  A1A2 An   with fewest 

multiplications, where A1 , A2 An    are m1       m2, m2      
m3 , mn      mn+1    integer matrices. Matrix multiplication 
is associative.

Example: In which order should the integer matrices 
A1A2A3 - where A1 is 30    20 , A2 20       40,  A3 40      10 -
be multiplied? Solution: two possible ways for A1A2A3.
– A1(A2A3): A2A3 takes 20  40  mults.. A1

by the 20    10 matrix A2A3 takes 30  20  mults. Total  
– (A1A2)A3: A1A2 takes 30  20  mults.  

A1A2 by A3 takes 30  40  mults.  Total is 
So the first method is best. 
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Matrix-Chain Multiplication
• Compute matrix-chain  A1A2 An   with fewest 

multiplications, where A1 , A2 An    are m1       m2, m2      
m3 , mn      mn+1    integer matrices. Matrix multiplication 
is associative.

Example: In which order should the integer matrices 
A1A2A3 - where A1 is 30    20 , A2 20       40,  A3 40      10 -
be multiplied? Solution: two possible ways for A1A2A3.
– A1(A2A3): A2A3 takes 20  40  10 mults.. A1

by the 20    10 matrix A2A3 takes 30  20  10 mults. Total number is 14,000. 
– (A1A2)A3: A1A2 takes 30  20  40 24,000 mults.  

A1A2 by A3 takes 30  40  10 12,000 mults.  Total is 24,000 12,000 ,000.
So the first method is best. 

wwwwhh   
Understanding the Complexity of 

Algorithms



Understanding the Complexity of 
Algorithms

Times of more than 10100   years are indicated 
with an *. 

Complexity of Problems
• Tractable Problem: There exists a polynomial time algorithm to 

solve this problem. These problems are said to belong to the 
Class P.

• Intractable Problem:  There does not exist a polynomial time 
algorithm to solve this problem

• Unsolvable Problem : No algorithm exists to solve this problem, 
e.g., halting problem.

• Class NP: Solution can be checked in polynomial time. But no 
polynomial time algorithm has been found for finding a solution 
to problems in this class. 

• NP Complete Class: If you find a polynomial time algorithm for 
one member of the class, it can be used to solve all the problems 
in the class.  

P Versus NP Problem

• The P versus NP problem asks whether the class  P = NP?  Are there problems 
whose solutions can be checked in polynomial time, but can not be solved in 
polynomial time?
– Note that just because no one has found a polynomial time algorithm is 

different from showing that the problem can not be solved by a 
polynomial time algorithm.

• If a polynomial time algorithm  for any of the problems in the NP complete 
class were found, then that algorithm could be used to obtain a polynomial 
time algorithm for every problem in the NP complete class.
– Satisfiability (in Section 1.3) is an NP complete problem. 

• It is generally believed that Pclass.  
Clay Mathematics Institute has offered a prize of $1,000,000 for a solution.

Stephen Cook
(Born 1939)


