Announcements

) e Read for next time Chap. 4.4-4.6
CompSci 102 P

Discrete Math for CompUter Science Finish Chapter 3 first, then start Chapter 4,
number theory

February 14, 2012

Prof. Rodger

Slides modified from Rosen

Chap 3.3 - The Complexity of

Algorithms The Complexity of Algorithms
« Given an algorithm, how efficient is this algorithm for * In this course, focus on time complexity.
solving a problem given input of a particular size? « Measure time complexity in terms of the
— How much time does this algorithm use to solve a problem? number of operations an algorithm uses
— How much computer memory does this algorithm use to solve Use big-O and big-Theta notation to estimate
a problem? the time complexity
* time complexity - analyze the time the algorithm uses to « Is it practical to use this algorithm to solve
solve the problem given input of a particular size problems with input of a particular size?
* space complexity - analyze the computer memory the « Compare the efficiency of different algorithms
algorithm uses to solve the problem, given input of a for solving the same problem.

particular size

Time Complexity

» For time complexity, determine the number of
operations, such as comparisons and arithmetic
operations (addition, multiplication, etc.).

* Ignore minor details, such as the “house
keeping” aspects of the algorithm.

» Focus on the worst-case time complexity of an
algorithm. Provides an upper bound.

* More difficult to determine the average case
time complexity of an algorithm (average
number of operations over all inputs of a
particular size)

Worst-Case Complexity of Linear Search

procedure linear search(x:integer,
ay, &y, ...,a,: distinct integers)

=1

while (i < nand x # &)
i=i+1

if i < n then location := i

else location := 0

return location{location is the subscript of the term that
equals x, or is 0 if x is not found}

Solution: Count the number of comparisons.

Complexity Analysis of Algorithms

Example: Describe the time complexity of the algorithm
for finding the maximum element in a finite sequence.

procedure max(ay, a,,, a,. integers)
max :=a,
fori:=2ton
if max < a; then max := g;
return max{max is the largest element}

Solution: Count the number of comparisons.

Average-Case Complexity of Linear Search

Example: average case performance of linear search

Solution; Assume the element is in the list and that
the possible positions are equally likely.

Worst-Case Complexity of Binary Search

procedure binary search(x: integer, a;,a,,..., a,: increasing integers)
i ;=1 {iis the left endpoint of interval}
j :=n{j is right endpoint of interval}
while i <j
m:= (i +])12]
ifx>a,theni:=m+1
elsej:=m
if x = a; then location := i
else location := 0

Worst-Case Complexity of Bubble Sort

procedure bubblesort(a,,...,a,: real numbers
with n > 2)
fori:==1ton-1
forj:=1ton —i
if a; >a;,, then interchange a; and a;,,
{a,,..., a, is now in increasing order}

return location{location is the subscript i of the term a; equal to X, or
0 if x is not found}

Solution: Assume n = 2k elements. Note that k = log n.

Worst-Case Complexity of Insertion Sort

procedure insertion sort(a,,...,a,:
real numbers with n > 2)
forj:=2ton
i=1
while a; > g
=i+l
m =g
fork:=0toj —i—1
Qi = Ay
a;:=m

Solution:

Solution

Matrix Multiplication Algorithm

* matrix multiplication algorithm; C = A B where C is an
mx n matrix that is the product of the m x k matrix A and

the k xn matrix B.

procedure matrix multiplication(A,B: matrices)

fori:=1tom

forj:=1ton
c;:=0 A = [a] .is a m X k mat
for g :=1tok B = [b;;] is a k X n matr

Cij -= Cij + &g Dy

rix
IX

return C{C = [c;] is the product of A and B}

Complexity of Matrix Multiplication Matrix-Chain Multiplication

» Compute matrix-chain A;A, - -A, with fewest

n

_ . . multlpllcatlons where A, A,, -+, A, arem;xX m, m
Example: How many additions of integers and My, =" My Moy mtegér matrices. Matrix muftlpllcétlo%
multiplications of integers are used by the E'S aSSOf'atI'V?m order should the i _
matrix multiplication algorithm to multiply Kaﬁnﬁe_ C\,her'ngr,frg% %0 tAe S(‘}eﬁii)m,i”ifgsxw]
two n % n matrices. be multlplled’? Solution: two possﬁ)le ways for A 1AA;.
Solution

Matrix-Chain Multiplication Understanding the Complexity of
Compute matrix-chain A;A,---A, with fewest "
multiplications, where Al%AZZ, -?-,An are my>x m,, m, X Algorlthms
My, -+ - My % My, integer matrices. Matrix muftlpllcatlon

IS aSSOC|at'Ve]) TABLE 1 Commonly Used Terminology for the
Example: In which order should the integer matrices Complexity of Algorithms.

AAA; - where A; is 30 x20 A%ZO x40, A;40 %10 -

be mulfiplied? Solution: two possible ways for A AOA,. Complexity Terminology
- Al(A A3) A A takes 20 - 40 - 10 = 8000 mults A A1) Constant complexity
trar)llutlrt]s ?r%i‘a% ﬂ&?ﬁﬂéxr oo b0 1100006000 ©og n) Logastimic complexify
©(n) Linear complexity
- (A A)A;: AA, takes 30 - 20 - 40 = 24,000 mults. O(n log n) Linearithmic complexity
Zby A, takes 30-40-10=12,000 mults Total On?) Polynomial complexity

1S 24 000 + 12,000 = 36,000.

. . O(b"), where b > 1 Exponential complexity
So the first method is best.

®(n!) Factorial complexity

Understanding the Complexity of
Algorithms

TABLE 2 The Computer Time Used by Algorithms,

Problem Size Bit Operations Used
n log n n nlogn n? 2" n!
10 3x107°Ms 107105 3x107195 10?5 1085 3Ix1077s
102 7x107s 1079 7x107%s 1077 s 4 x 10" yr
108 10x1070s 1078 11077 s 1075 s ¥
10t 1I3%107% wls ety 107% *
10° 1.7 x10~10 1070 s 2x 1075 0.1s #
100 2x10"10g 1075 s 2x 107 0.17 min g

Times of more than 101°° years are indicated
with an *.

P Versus NP Problem &

Stephen Cook
(Born 1939)
The P versus NP problem asks whether the class P = NP? Are there problems
whose solutions can be checked in polynomial time, but can not be solved in
polynomial time?
— Note that just because no one has found a polynomial time algorithm is
different from showing that the problem can not be solved by a
polynomial time algorithm.

If a polynomial time algorithm for any of the problems in the NP complete
class were found, then that algorithm could be used to obtain a polynomial
time algorithm for every problem in the NP complete class.

— Satisfiability (in Section 1.3) is an NP complete problem.
It is generally believed that P#=NP since no one has been able to find a
polynomial time algorithm for any of the problems in the NP complete
class.
The problem of P versus NP remains one of the most famous unsolved
problems in mathematics (including theoretical computer science). The
Clay Mathematics Institute has offered a prize of $1,000,000 for a
solution.

Complexity of Problems

Tractable Problem: There exists a polynomial time algorithm to
solve this problem. These problems are said to belong to the
Class P.

Intractable Problem: There does not exist a polynomial time
algorithm to solve this problem

Unsolvable Problem : No algorithm exists to solve this problem,
e.g., halting problem.

Class NP: Solution can be checked in polynomial time. But no
polynomial time algorithm has been found for finding a solution
to problems in this class.

NP Complete Class: If you find a polynomial time algorithm for
one member of the class, it can be used to solve all the problems
in the class.

