CompSci 102 Discrete Math for Computer Science

February 14, 2012

Prof. Rodger

Slides modified from Rosen

Chap 3.3 - The Complexity of Algorithms

- Given an algorithm, how efficient is this algorithm for solving a problem given input of a particular size?
 - How much time does this algorithm use to solve a problem?
 - How much computer memory does this algorithm use to solve a problem?
- *time complexity* analyze the time the algorithm uses to solve the problem given input of a particular size
- *space complexity* analyze the computer memory the algorithm uses to solve the problem, given input of a particular size

Announcements

- Read for next time Chap. 4.4-4.6
- Finish Chapter 3 first, then start Chapter 4, number theory

The Complexity of Algorithms

- In this course, focus on time complexity.
- Measure time complexity in terms of the number of operations an algorithm uses
- Use big-*O* and big-Theta notation to estimate the time complexity
- Is it practical to use this algorithm to solve problems with input of a particular size?
- Compare the efficiency of different algorithms for solving the same problem.

Time Complexity

- For time complexity, determine the number of operations, such as comparisons and arithmetic operations (addition, multiplication, etc.).
- Ignore minor details, such as the "house keeping" aspects of the algorithm.
- Focus on the *worst-case time* complexity of an algorithm. Provides an upper bound.
- More difficult to determine the *average case time complexity* of an algorithm (average number of operations over all inputs of a particular size)

Worst-Case Complexity of Linear Search

procedure *linear search*(*x*:integer, $a_1, a_2, ..., a_n$: distinct integers) i := 1**while** $(i \le n \text{ and } x \ne a_i)$ i := i + 1**if** $i \le n$ **then** *location* := *i* **else** *location* := 0 **return** *location* {*location* is the subscript of the term that equals *x*, or is 0 if *x* is not found}

Solution: Count the number of comparisons.

٠

Complexity Analysis of Algorithms

Example: Describe the time complexity of the algorithm for finding the maximum element in a finite sequence.

procedure $max(a_1, a_2, ..., a_n: integers)$ $max := a_1$ **for** i := 2 to nif $max < a_i$ then $max := a_i$ return $max\{max \text{ is the largest element}\}$

Solution: Count the number of comparisons.

Average-Case Complexity of Linear Search

Example: average case performance of linear search **Solution**: Assume the element is in the list and that the possible positions are equally likely.

Worst-Case Complexity of Binary Search

procedure binary search(*x*: integer, $a_1, a_2, ..., a_n$: increasing integers) $i := 1 \{i \text{ is the left endpoint of interval}\}$ $j := n \{j \text{ is right endpoint of interval}\}$ while i < j $m := \lfloor (i + j)/2 \rfloor$ if $x > a_m$ then i := m + 1else j := mif $x = a_i$ then location := ielse location := 0return location{location is the subscript i of the term a_i equal to x, or 0 if x is not found}

```
Solution: Assume n = 2^k elements. Note that k = \log n.
```

Worst-Case Complexity of Bubble Sort

procedure *bubblesort*($a_1,...,a_n$: real numbers with $n \ge 2$) **for** i := 1 to n - 1 **for** j := 1 to n - i **if** $a_j > a_{j+1}$ **then** interchange a_j and a_{j+1} { $a_1,...,a_n$ is now in increasing order}

Solution

Worst-Case Complexity of Insertion Sort

```
procedure insertion sort(a_1,...,a_n:
real numbers with n \ge 2)
for j := 2 to n
i := 1
while a_j > a_i
i := i + 1
m := a_j
for k := 0 to j - i - 1
a_{j-k} := a_{j-k-1}
a_i := m
```

Solution:

Matrix Multiplication Algorithm

matrix multiplication algorithm; C = A B where C is an m×n matrix that is the product of the m×k matrix A and the k×n matrix B.

procedure matrix multiplication(A,B: matrices) for i := 1 to m for j := 1 to n $c_{ij} := 0$ $\mathbf{A} = [a_{ij}]$ is a $m \times k$ matrix for q := 1 to k $\mathbf{B} = [b_{ij}]$ is a $k \times n$ matrix $c_{ij} := c_{ij} + a_{iq} b_{qj}$ return C{C = $[c_{ij}]$ is the product of A and B}

Complexity of Matrix Multiplication

Example: How many additions of integers and multiplications of integers are used by the matrix multiplication algorithm to multiply two $n \times n$ matrices.

Solution

Matrix-Chain Multiplication

• Compute *matrix-chain* $\mathbf{A}_1 \mathbf{A}_2 \cdots \mathbf{A}_n$ with fewest multiplications, where $\mathbf{A}_1, \mathbf{A}_2, \cdots, \mathbf{A}_n$ are $m_1 \times m_2, m_2 \times m_3, \cdots, m_n \times m_{n+1}$ integer matrices. Matrix multiplication is associative.

Example: In which order should the integer matrices $A_1A_2A_3$ - where A_1 is 30 ×20 A_2 20 ×40, A_3 40 ×10 - be multiplied? **Solution**: two possible ways for $A_1A_2A_3$.

Matrix-Chain Multiplication

• Compute *matrix-chain* $\mathbf{A}_1\mathbf{A}_2\cdots\mathbf{A}_n$ with fewest multiplications, where $\mathbf{A}_1, \mathbf{A}_2, \cdots, \mathbf{A}_n$ are $m_1 \times m_2, m_2 \times m_3, \cdots, m_n \times m_{n+1}$ integer matrices. Matrix multiplication is associative.

Example: In which order should the integer matrices $A_1A_2A_3$ - where A_1 is 30 ×20 A_2 20 ×40, A_3 40 ×10 - be multiplied? **Solution**: two possible ways for $A_1A_2A_3$.

- $A_1(A_2A_3)$: A_2A_3 takes $20 \cdot 40 \cdot 10 = 8000$ mults. A_1 by the 20×10 matrix A_2A_3 takes $30 \cdot 20 \cdot 10 = 6000$ mults. Total number is 8000 + 6000 = 14,000.
- $(\mathbf{A}_1\mathbf{A}_2)\mathbf{A}_3$: $\mathbf{A}_1\mathbf{A}_2$ takes $30 \cdot 20 \cdot 40 = 24,000$ mults. $\mathbf{A}_1\mathbf{A}_2$ by \mathbf{A}_3 takes $30 \cdot 40 \cdot 10 = 12,000$ mults. Total is 24,000 + 12,000 = 36,000.

So the first method is best.

Understanding the Complexity of Algorithms

TABLE 1 Commonly Used Terminology for theComplexity of Algorithms.

Complexity	Terminology			
$\Theta(1)$	Constant complexity			
$\Theta(\log n)$	Logarithmic complexity			
$\Theta(n)$	Linear complexity			
$\Theta(n \log n)$	Linearithmic complexity			
$\Theta(n^b)$	Polynomial complexity			
$\Theta(b^n)$, where $b > 1$	Exponential complexity			
$\Theta(n!)$	Factorial complexity			

Understanding the Complexity of Algorithms

Problem Size n	Bit Operations Used						
	log n	n	$n \log n$	n^2	2 ⁿ	<i>n</i> !	
10	3×10^{-11} s	10^{-10} s	3×10^{-10} s	10 ⁻⁹ s	10 ⁻⁸ s	3×10^{-7}	
10 ²	$7 \times 10^{-11} \text{ s}$	10^{-9} s	7×10^{-9} s	10^{-7} s	$4 \times 10^{11} \text{ yr}$	4	
10 ³	$1.0 \times 10^{-10} \text{ s}$	$10^{-8} { m s}$	1×10^{-7} s	10^{-5} s	*	*	
104	$1.3 \times 10^{-10} \text{ s}$	10^{-7} s	1×10^{-6} s	10^{-3} s	*	*	
10 ⁵	$1.7 \times 10^{-10} \text{ s}$	10^{-6} s	2×10^{-5} s	0.1 s	*	非	
106	2×10^{-10} s	10^{-5} s	2×10^{-4} s	0.17 min	14	*	

Times of more than 10^{100} years are indicated with an *.

- The *P versus NP problem* asks whether the class P = NP? Are there problems whose solutions can be checked in polynomial time, but can not be solved in polynomial time?
 - Note that just because no one has found a polynomial time algorithm is different from showing that the problem can not be solved by a polynomial time algorithm.
- If a polynomial time algorithm for any of the problems in the NP complete class were found, then that algorithm could be used to obtain a polynomial time algorithm for every problem in the NP complete class.
 - Satisfiability (in Section 1.3) is an NP complete problem.
- It is generally believed that P≠NP since no one has been able to find a polynomial time algorithm for any of the problems in the NP complete class.
- The problem of P versus NP remains one of the most famous unsolved problems in mathematics (including theoretical computer science). The Clay Mathematics Institute has offered a prize of \$1,000,000 for a solution.

Complexity of Problems

- *Tractable Problem*: There exists a polynomial time algorithm to solve this problem. These problems are said to belong to the *Class P*.
- *Intractable Problem*: There does not exist a polynomial time algorithm to solve this problem
- *Unsolvable Problem* : No algorithm exists to solve this problem, e.g., halting problem.
- *Class NP*: Solution can be checked in polynomial time. But no polynomial time algorithm has been found for finding a solution to problems in this class.
- *NP Complete Class*: If you find a polynomial time algorithm for one member of the class, it can be used to solve all the problems in the class.