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Chap. 4.1 - Division
   Definition: If a and b are integers with 0, 

then       a divides b if there exists an integer c
such that  b = ac.
– When a divides b we say that a is a factor or

divisor of b and that b is a multiple of a.
– The notation a | b denotes that a divides b.
– If a | b, then b/a is an integer.
– If a does not divide b, we write a b.

   Example: Determine whether 3 | 7 and  
whether          3 | 12.

Properties of Divisibility
Theorem 11: Let a, b, and c be integers, where a .

i. If a | b and a | c, then a | (b + c);
ii. If a | b, then a | bc for all integers c;
iii. If a | b and b | c, then a | c.

Proof: (i)  Suppose a | b and a | c
It follows that integers s and t with b = as and c = at.

Hence, b + c = as + at = a(s + t).    Hence,  a | (b + c)

Corollary: If a, b, and c be integers, where a , such that a | b
and a | c, then a | mb + nc whenever m and n are integers. 
Proof: a | b  so a | mb, a | c so  a | nc. By (ii)
by (i), a | (mb + nc)
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Division Algorithm
Division Algorithm: If a is an integer and d a positive 
integer, then there are unique integers q and r, with 0 r
< d, such that  a = dq + r

• d is called the divisor.
• a is called the dividend.
• q is called the quotient.      
• r is called the remainder.

Examples:
• What are the quotient and remainder when 101 is divided by 11?
     Solution: The quotient when 101 is divided by 11 is 9 = 101 div11,   and the remainder is 2 = 101 mod 11.
• What are the quotient and remainder when 11 is divided by 3?
     Solution: The quotient when 11 is divided by 3 is 4 = 11 

div 3,    and the remainder is 1 = 11 mod 3.

Definitions of Functions  
div and mod

q = a div d
r = a mod d
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Congruence Relation
   Definition: If a and b are integers and m is a positive integer, then a is

congruent to b modulo m if m divides    a – b.
– The notation a  b (mod m) says  that a is congruent to b modulo 

m.
– We say that a  b (mod m) is a congruence and that m is its 

modulus.
– Two integers are congruent mod m if and only if they have the 

same remainder when divided by m.
– If a is not congruent to b modulo m, we write 
                  a b (mod m)

    Example: Determine whether 19 is congruent to 3 modulo 4 and 
whether 26 and 16 are congruent modulo 6.

    Solution:19 3 (mod 4) because 4 divides 19 3 = 16.  26 16 (mod 6) since 26 16 = 10  is not divisible by 6.
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More on Congruences
   Theorem 44: Let m be a positive integer. The 

integers a and b are congruent modulo m if and 
only if there is an integer k such that a = b + km.

    Proof:
– If a b (mod m), then 
(by the definition of congruence)  m | a – b. 

Hence, there is an integer k such that a – b = km and 
equivalently a = b + km.
– Conversely, if  integer k such that a = b + km, 
then km = a – b. 
Hence, m | a – b and a b (mod m).
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The Relationship between        
(mod m) and mod m Notations

• The use of “mod” in a b (mod m) and a mod m
= b are different.
– a   b (mod m) is a relation on the set of integers.
– In a mod m = b,  the notation mod denotes a function.

• The relationship between these notations is made 
clear in this theorem.

• Theorem 3: Let a and b be integers, and let m be a 
positive integer. Then a b (mod m)  if and only if       
a mod m = b mod m. (Proof  in the exercises)

Congruences of Sums and Products
   Theorem 55: Let m be a positive integer. If  a b (mod m) and  

c d (mod m), then
      a + c  b + d (mod m) and ac  bd (mod m)
    Proof:

– Because a  b (mod m)  and c  d (mod m), by Theorem 4 there 
are integers s and t with b = a + sm and d = c + tm.

– Therefore,  
• b + d = (a + sm) + (c + tm) = (a + c) + m(s + t) and
• b d = (a + sm) (c + tm) = ac + m(at + cs + stm).

– Hence, a + c  b + d (mod m) and ac  bd (mod m
– ). 

   Example: Because 7 2 (mod 5) and  11 1 (mod 5) , it 
follows from Theorem 5 that18 = 7 + 11 2 + 1 = 3 (mod 5)77 = 7  11 2 + 1 = 3 (mod 5)
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Algebraic Manipulation of Congruences
• Multiplying both sides of a valid congruence by an 

integer preserves validity. 
    If a b (mod m) holds then c a c b (mod m), where c is 

any integer, holds by Theorem 5 with d = c.
• Adding an integer to both sides of a valid congruence 

preserves validity.
    If a b (mod m) holds then c + a c + b (mod m), where 

c is any integer, holds by Theorem 5 with d = c.
• Dividing a congruence by an integer does not always 

produce a valid congruence.

    Example: The congruence 14 8 (mod 6) holds. But 
dividing both sides by 2 does not produce a valid 
congruence since     14/2 = 7 and 8/2 = 4, but     7 4 (mod 6).       See Section 4.3 for conditions when division is ok. 

Computing the mod m Function of 
Products and Sums

• We use the  following corollary to Theorem 5  to  compute the remainder of the product or sum of two integers when divided by m from the remainders when each is divided by m.
Corollary: Let m be a positive integer and let a and b be 
integers. Then

(a + b) (mod m) =  ((a mod m) + (b mod m)) mod m
    and
    ab mod m = ((a mod m) (b mod m)) mod m.
        (proof  in text)

Arithmetic Modulo m
Definitions: Let Zm be the set of nonnegative 

integers less than m: {0,1, …., m }
• The operation +m is defined as a +m b = (a + b) mod

m. This is addition modulo m.
• The operation m is defined as a m b = (a b) mod

m. This is multiplication modulo m.
• Using these operations is said to be doing arithmetic

modulo m.

Example: Find 7 +11 9    and 7 11 9.
Solution: Using the definitions above:– 7 +11 9 = (7 + 9)  mmod 11 = 16 mmod 11 = 5 – 7 11 9 = (7  9)  mmod 11 = 63 mmod 11 = 8
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Arithmetic Modulo m
• The operations +m and  m    satisfy many of the same properties 

as ordinary addition and multiplication.

– Closure: If a and b belong to Zm , then a +m b and a m b
belong to Zm .

– Associativity: If a, b, and c belong to Zm , then                                    
(a +m b) +m c  = a +m (b +m c) and (a m b) m c  = a m (b m c).

– Commutativity: If a and b belong to Zm , then                                     
a +m b  = b +m a and a m b  = b m a.

– Identity elements: The elements 0 and 1 are identity 
elements for addition and multiplication modulo m,
respectively.

• If a belongs to  Zm , then a +m 0 = a and a m 1 = a.

Arithmetic Modulo m
– Additive inverses: If a 0 belongs to  Zm , then m a is the 

additive inverse of a modulo m and 0 is its own additive inverse.  
• a +m (m a ) = 0 and 0 +m 0 = 0 

– Distributivity: If a, b, and c belong to Zm , then 
• a m (b +m c) = (a m b) +m (a m c) and                                               

(a +m b) m c  = (a m c) +m (b m c). Exercises 42-44 ask for proofs of these properties. Multiplicative inverses have not been included since they do not always exist. For example, there is no multiplicative inverse of 2 modulo 6. 

Example
• What is the distributive property of 

multiplication over addition for with  2 an integer?   +  =    +    
   with , , ,  
• Proof: by def and corollary 2
Left side is a(b+c) mod m
Right side is ab + bc  mod m
Thus a(b+c) mod m = ab + bc mod m
Since mult. distributive over add. for integers
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Chap. 4.2 Representations of 
Integers

• In the modern world, we use decimal, or base 10,
notation to represent integers. For example when we 
write 965, we mean 9 2  + 6 1  + 5 0 .

• We  can represent numbers using any base b, where 
b is a positive integer greater than 1.

• The bases b = 2 (binary), b = 8 (octal) , and b= 16 
(hexadecimal) are important for computing and 
communications

• The ancient Mayans used base 20 and the ancient 
Babylonians used base 60.

Base b Representations
• We can use positive integer b greater than 1 as a base, 

because of this theorem:
Theorem 11: Let b be a positive integer greater than 1.
Then if n is a positive integer, it can be expressed uniquely 
in the form:

n = akbk + ak-1bk-1 + …. + a1b + a0 
where k is a nonnegative integer, a0,a1,…. ak are 
nonnegative integers less than b, and ak 0. The aj, j =0,…,k are called the base-b digits of the representation.

• The representation of n given in Theorem 1 is called the 
base b expansion of n and is denoted by (akak-1….a1a0)b.

• We usually omit the  subscript 10 for base 10 expansions.

Binary Expansions
   Most computers represent integers and do arithmetic 

with binary  (base 2) expansions of integers. In 
these expansions, the only digits used are 0 and 1.

Example: What is the decimal expansion of  the 
integer that has (1 0101 1111)2 as its binary 
expansion?

Solution:
    (1 0101 1111)2     = 1 8  + 0 7  + 1 6  + 0 5  + 1 4  + 1 3  + 1 2  + 1 1  + 1 0  =351. 
Example: What is the decimal expansion of  the 

integer that has  (11011)2 as its binary expansion?
Solution: (11011)2 = 1 4  + 1 3  + 0 2  + 1 1  + 1 0  =27. 



Binary Expansions
   Most computers represent integers and do arithmetic 

with binary  (base 2) expansions of integers. In 
these expansions, the only digits used are 0 and 1.

Example: What is the decimal expansion of  the 
integer that has (1 0101 1111)2 as its binary 
expansion?

Solution:
    (1 0101 1111)2     = 1 8  + 0 7  + 1 6  + 0 5  + 1 4  + 1 3  + 1 2  + 1 1  + 1 0  =351. 
Example: What is the decimal expansion of  the 

integer that has  (11011)2 as its binary expansion?
Solution: (11011)2 = 1 4  + 1 3  + 0 2  + 1 1  + 1 0  =27. 

Octal Expansions

The octal expansion (base 8) uses the digits 
{0,1,2,3,4,5,6,7}.

   Example: What is the decimal expansion of the 
number with octal expansion (7016)8 ?

   Solution: 7 3  + 0 2  + 1 1  + 6 0  =3598    Example: What is the decimal expansion of the 
number with octal expansion (111)8 ? 

   Solution: 1 2  + 1 1  + 1 0  = 64 + 8 + 1 = 73

Octal Expansions

The octal expansion (base 8) uses the digits 
{0,1,2,3,4,5,6,7}.

   Example: What is the decimal expansion of the 
number with octal expansion (7016)8 ?

   Solution: 7 3  + 0 2  + 1 1  + 6 0  =3598    Example: What is the decimal expansion of the 
number with octal expansion (111)8 ? 

   Solution: 1 2  + 1 1  + 1 0  = 64 + 8 + 1 = 73

Hexadecimal Expansions
   The hexadecimal expansion needs 16 digits, but our decimal 

system provides only 10. So letters are used for the additional 
symbols.  The hexadecimal system uses the digits 
{0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F}. The letters A through F 
represent the decimal numbers 10 through 15.

   Example: What is the decimal expansion of the number with 
hexadecimal expansion (2AE0B)16 ?

   Solution:     2 4  + 10 3  + 14 2  + 0 1  + 11 0  =175627     Example: What is the decimal expansion of the number with 
hexadecimal expansion (E5)16 ?

   Solution: 1 2 + 14 1  + 5 0  = 256 + 224 + 5 = 485    
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Base Conversion
To construct the base b expansion of an integer n:

– Divide n by b to obtain a quotient and remainder.
n = bq0 + a0     0  a0  b

– The remainder, a0 , is the rightmost digit in the base b
expansion of n. Next, divide q0 by b.

q0 = bq1 + a1     0  a1  b
– The remainder, a1, is the second digit from the right in 

the base b expansion of n.
– Continue by successively dividing the quotients by b,

obtaining the additional base b digits as the remainder. 
The process terminates when the quotient is 0.

continued

Algorithm: Constructing Base b Expansions

• q represents the quotient obtained by successive divisions by b,
starting with q = n.

• The digits in the base b expansion are the remainders of the 
division given by q mod b.

• The algorithm terminates when q = 0 is reached.

procedure base b expansion(n, b: positive integers with b > 1)
q := n
k := 0 
while (q 0)
       ak := q mod b
       q := q div b
       k := k + 1
return(ak-1 ,…, a1,a0){(ak-1 … a1a0)b is base b expansion of n}

Base Conversion
   Example: Find the octal expansion of 

(12345)10

    Solution:  Successively dividing by 8 gives:
– 12345 1543 + 1 
–   1543 192 + 7 
–    192 24 + 0 
–    24 3 + 0 –    3 0 + 3 

   The remainders are the digits from right to 
left   yielding  (30071)8.
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Comparison of Hexadecimal, Octal, 
and Binary Representations

Each octal digit corresponds to a block of 3 binary digits.
Each hexadecimal digit corresponds to a block of 4 binary 
digits. 
So, conversion between binary, octal, and hexadecimal is easy.

Initial 0s are not shown

Conversion Between Binary, Octal, 
and Hexadecimal Expansions

   Example: Find the octal and hexadecimal 
expansions of (11 1110 1011 1100)2.

   Solution:
– To convert to octal, we group the digits into blocks of 

three (011 111 010 111 100)2, adding initial 0s as 
needed. The blocks from left to right correspond to the 
digits 3,7,2,7, and 4. Hence, the solution is (37274)8.

– To convert to hexadecimal, we group the digits into 
blocks of four (0011 1110 1011 1100)2, adding initial 0s as needed. The blocks from left to right correspond 
to the digits 3,E,B, and C. Hence, the solution is 
(3EBC)16.
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   Solution:
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needed. The blocks from left to right correspond to the 
digits 3,7,2,7, and 4. Hence, the solution is (37274)8.

– To convert to hexadecimal, we group the digits into 
blocks of four (0011 1110 1011 1100)2, adding initial 0s as needed. The blocks from left to right correspond 
to the digits 3,E,B, and C. Hence, the solution is 
(3EBC)16.



Binary Addition of Integers
• Algorithms for performing operations with integers using 

their binary expansions are important as computer chips 
work with binary numbers. Each digit is called a bit.

• The number of additions of bits used by the algorithm to add 
two n-bit integers is O(n).

procedure add(a, b: positive integers)
{the binary expansions of a and b are (an-1,an-2,…,a0)2 and (bn-1,bn-2,…,b0)2, respectively}
c := 0 
for  j := 0 to n

d := (aj + bj + c)/2
sj := aj + bj + c 2d
c := d

sn := c
return(s0,s1,…, sn){the binary expansion of the sum is (sn,sn-1,…,s0)2}

Binary Multiplication of Integers
• Algorithm for computing the product of two n bit 

integers.

• The number of additions of bits used by the 
algorithm to multiply two n-bit integers is O(n2).

procedure multiply(a, b: positive integers)
{the binary expansions of a and b are (an-1,an-2,…,a0)2 and (bn-1,bn-2,…,b0)2, respectively} 
for  j := 0 to n  
        if bj = 1 then cj = a shifted j places
        else cj := 0 {co,c1,…, cn-1 are the partial products}
p := 0 

for  j := 0 to n
    p  := p + cj
return p {p is the value of ab}

Binary Modular Exponentiation
• In cryptography, it  is important to be able to find  bn mod m

efficiently, where b, n, and m are large integers.
• Use the binary expansion of n, n = (ak-1,…,a1,ao)2 , to compute 

bn .
     Note that:
                           
• Therefore,  to compute  bn, we need only compute the values of  

b, b2, (b2)2 = b4, (b4)2 = b8 , …,       and the multiply the terms           
in this list, where aj = 1.

    Example: Compute 311 using this method.       Solution: Note that 11 = (1011)2 so that   311 = 38 32 31 =           ((32)2 )2 32 31  = (92 )2 9 3 = (81)2 9 3 =6561 9 3=117,147.  
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Binary Modular Exponentiation 
Algorithm

• The algorithm successively finds b mod m, b2 mod
m,            b4 mod m, …,         mod m, and 
multiplies together the terms        where aj = 1.

– O((log m )2 log n) bit operations are used to find  bn

mod m.

procedure modular exponentiation(b: integer, n = (ak-1ak-2…a1a0)2 , m: positive 
integers)

x := 1 
power := b mod m
for  i := 0 to k  
        if ai= 1 then x := (x power ) mod m
        power := (power power ) mod m
return x {x equals bn mod m }
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