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Chap 4.3 - Primes The Fundam_ental Theorem of
Arithmetic

Theorem: Every positive integer greater than
1 can be written uniquely as a prime or as the
product of two or more primes where the
prime factors are written in order of

Definition: A positive integer p greater than
1 is called prime if the only positive factors
of p are 1 and p. A positive integer that is
greater than 1 and is not prime is called

composite. nondecreasing size.
Examples:

Example: The integer 7 is prime because - 105 =

its only positive factorsare 1 and 7, but 9 - 641 =

IS composite because it is divisible by 3. ~-221=

- 1024 =



The Fundamental Theorem of

Arithmetic

Theorem: Every positive integer greater than
1 can be written uniquely as a prime or as the
product of two or more primes where the
prime factors are written in order of
nondecreasing size.

Examples:
- 105 = 3:5:7
- 641 = 641

-221= 13-17
- 1024 =

TABLE 1 The Sieve of Eratosthenes.

Integers divisible by 2 other than 2 Integers divisible by 3 other than 3

receive an underline. receive an underline.

I 2 3 4 5 6 7 8 9 10 12 3 4 5 6 7 8 9 10
112 13 14 15 16 17 18 19 20 112 13 14 15 16 17 18 19 20
20022 23 24 25 26 27 28 29 30 21022 23 24 25 26 27 28 29 30
30032 033 34035 36 37 38 39 40 3032 033 34 035 36 37 38 39 40
41 42 43 44 45 46 47 48 49 50 41 42 43 44 45 46 47 48 49 50
51 52 53 54 55 56 57 58 59 60 51 52 53 54 55 56 57 58 59 60
6l 62 63 64 65 66 67 68 60 70 61 62 63 64 65 66 67 68 69 70
71 72 73 4 75 16 77 18 79 80 71 72 73 74 15 16 77 18 79 80
81 82 83 84 85 86 87 88 89 90 81 82 83 B4 85 86 87 88 89 90
91 92 93 94 95 96 97 98 99 100 91 92 93 94 95 96 97 98 99 100
Integers divisible by 5 other than 5 Integers divisible by 7 other than 7 receive
receive an underline. an underline; integers in color are prime.

1 2 3 4 5 6 7 8 9 10 1 4 6 § 9 10
1112 13 14 15 16 17 18 19 20 12 13 14 15 16 17 18 19 20
21 22 23 4 25 26 27 28 29 30 21 22 24 35 26 27 28 30
3032 33 34 035 36 37 38 39 40 32033 34 35 36 37 38 39 40
41 42 43 44 45 46 47 48 49 50 42 43 44 45 46 47 48 49 50
51 52 53 54 55 56 57 58 59 60 51 52 53 34 55 56 57 358 60
61 62 63 64 65 66 67 68 69 70 62 63 64 65 66 67 68 69 70
712 73 14 75 %6 77 I8 79 80 1 4075 6 71 B8 80
81 82 83 84 85 86 87 RS 89 90 81 82 84 85 86 87 88 90
91 92 93 94 95 96 97 98 99 100 91 92 93 94 95 96 97 98 9 100

2:2-2:2-2-2:2-2-2-2=21

The Sieve of Erastosthenes

Erastothenes
(276-194 B.C.)

* The Sieve of Erastosthenes can be used to find all
primes not exceeding a specified positive integer.
For example, begin with the list of integers between
1 and 100.

a.
b.
C.

Delete all the integers, other than 2, divisible by 2.
Delete all the integers, other than 3, divisible by 3.

?ext, delete all the integers, other than 5, divisible by
y.ext, delete all the integers, other than 7, divisible by
Since all the remaining integers are not divisible by
any of the previous integers, other than 1, the primes
" continued —

The Sieve of Erastosthenes

If an integer n is a composite integer, then it has a prime
divisor less than or equal to Vn.

To see this, note that if n = ab, then a <+n orb <vn.

Trial division, a very inefficient method of determining if a
number n is prime, is to try every integer i <v'n and see if
n is divisible by i.

In previous example, why did we use only 2, 3, 5 and 7?



Euclid
(325 B.C.E. - 265 B.C.E.)

Ve A

Infinitude of Primes .g

Theorem: There are infinitely many primes. (Euclid)
Proof: Assume finitely many primes: py, py, -...., P,

- Letq=p;ppy+1
— Either q is prime or by the fundamental theorem of
arithmetic it is a product of primes.
* But none of the primes p; divides g since if p;| g, then p;
divides q—pPPPr=1.
* Hence, there is a prime not on the list p;, p,, ....., p,. Itis
either g, or if q is composite, it is a prime factor of q.
This contradicts the assumption that p,, p,, ....., p, are
all the primes.

— Consequently, there are infinitely many primes. ﬁ

This proof was given by Euclid The Elements. The proof is considered to be one of the
most beautiful in all mathematics. Itis the first proof in The Book, inspired by the Paul Erdés
famous mathematician Paul Erdés’ imagined collection of perfect proofs maintained by (1913-1996)
God.

Distribution of Primes

Mathematicians have been interested in the
distribution of prime numbers among the positive
integers. In the nineteenth century, the prime
number theorem was proved which gives an
asymptotic estimate for the number of primes not
exceeding x.

Prime Number Theorem: The ratio of the number

of primes not exceeding x and x/In x approaches 1 as

x grows without bound. (In x is the natural logarithm

of x)

— The theorem tells us that the number of primes not
exceeding x, can be approximated by x/In x.

— The odds that a randomly selected positive integer less
than n is prime are approximately (n/In n)/n = 1/In n.

Marin Mersenne
(1588-1648)

Mersenne Primes &

Definition: Prime numbers of the form 27 —1 , where p
Is prime, are called Mersenne primes.
- 22-1=3,22-1=7,25-1 =37,and 27 -1 =127
are Mersenne primes.

- 21 —1 =2047 isnota Mersenne prime since 2047 =
23-89.

- There is an efficient test for determining if 27 —1 is
prime.
- The largest known prime numbers are Mersenne primes.

- As of mid 2011, 47 Mersenne primes were known, the
largest is 243112609 —1 which has nearly 13 million
decimal digits.

- The Great Internet Mersenne Prime Search (GIMPS) is a
distributed computing project to search for new
Mersenne Primes.

Generating Primes

Finding large primes with hundreds of digits is
important in cryptography.

There is no simple function f(n) such that f(n) is
prime for all positive integers n.

Consider

— f(n) =n? —n + 41 is prime for all integers 1,2,..., 40.
- But f(41) = 412 is not prime.

Fortunately, we can generate large integers which
are almost certainly primes. See Chapter 7.



Conjectures about Primes

Many conjectures about them are unresolved, including:

Goldbach’s Conjecture: Every even integer n, n > 2, is the
sum of two primes. It has been verified by computer for all
positive even integers up to 1.6 -10'8. The conjecture is
believed to be true by most mathematicians.

There are infinitely many primes of the form 72 + 1, where n
is a positive integer. But it has been shown that there are
infinitely many primes of the form > + 1, where nis a
positive integer or the product of at most two primes.

The Twin Prime Conjecture: The twin prime conjecture is that
there are infinitely many pairs of twin primes. Twin primes
are pairs of primes that differ by 2. Examples are 3 and 5, 5
and 7, 11 and 13, etc. The current world’s record for twin
primes (as of mid 2011) consists of numbers
65,516,468,355:2333:333 41, which have 100,355 decimal
digits.

Greatest Common Divisor

Definition: Let a and b be integers, not both zero. The largest
integer d such that d | a and also d | b is called the greatest
common divisor of a and b. The greatest common divisor of a
and b is denoted by gcd(a,b).

One can find greatest common divisors of small numbers by
inspection.

Example:What is the greatest common divisor of 24 and 36?
Solution: gcd(24,36) = 12

Example:What is the greatest common divisor of 17 and 22?
Solution: gcd(17,22) =1

Greatest Common Divisor

Definition: Let a and b be integers, not both zero. The largest
integer d such that d | a and also d | b is called the greatest
common divisor of a and b. The greatest common divisor of a
and b is denoted by gcd(a,b).

One can find greatest common divisors of small numbers by
inspection.

Example:What is the greatest common divisor of 24 and 36?

Example:What is the greatest common divisor of 17 and 22?

Greatest Common Divisor

Definition: The integers a and b are relatively prime if
their greatest common divisor is 1.

Example: 17 and 22

Definition: The integers a,, a,, ..., a, are pairwise
relatively prime if gcd(a;, )= 1 whenever 1 < i<j <n.
Example: Determine whether the integers 10, 17 and 21

are pairwise relatively prime.

Solution:

Example: Determine whether the integers 10, 19, and
24 are pairwise relatively prime.

Solution:



Greatest Common Divisor

Definition: The integers a and b are relatively prime if
their greatest common divisor is 1.

Example: 17 and 22

ged(17,22) =1
Definition: The integers a,, a,, ..., a, are pairwise
relatively prime if gcd(a;, )= 1 whenever 1 < i<j <n.
Example: Determine whether the integers 10, 17 and 21
are pairwise relatively prime.
Solution: Because gcd(10,17) =1, gcd(10,21) =1,
and gcd(17,21) =1, 10,17, and 21 are pairwise
relatively prime.
Example: Determine whether the integers 10, 19, and
24 are pairwise relatively prime.

Solution: Because gcd(10,24) = 2,10, 19, and 24 are
not pairwise relatively prime.

Finding the Greatest Common
Divisor Using Prime Factorizations

Suppose the prime factorizations of a and b are:

@y (12 -

a :JUI P‘.?. "‘pn ! by :

b= p ;ﬁl; SO 1 1l
where each exponent is a nonnegative integer, and where all primes
occurring in either prime factorization are included in both. Then:

min(a,.by,)

P

Min(a;.by) Min(az.by)
ged(a, b) = py i He ']pg XRBid

This formula is valid since the integer on the right (of the equals

sign) divides both a and b. No larger integer can divide both a and b.

Example: 120= 23-3-5 500= 22 -53

ng(lZO,SOO) = 2min(3,2) .3min(1,0) .5min(1,3) = 22.30.51 = 2()
Finding the gcd of two positive integers using their prime _
factorizations is not efficient because there is no efficient algorithm
for finding the prime factorization of a positive integer.

Finding the Greatest Common

Divisor Using Prime Factorizations

Suppose the prime factorizations of a and b are:

BT e by ;

A g 2 r
b=p'pa*...por .

where each exponent is a nonnegative integer, and where all primes

occurring in either prime factorization are included in both. Then:

Min(a;.b;) Min(az.bz) min(a,.by,)
Ps :

P

ged(a,b) = p

This formula is valid since the integer on the right (of the equals
sign) divides both a and b. No larger integer can divide both a and b.

Example: 120= 23-3-5 500= 22 -53
gcd(120,500) =

Finding the gcd of two positive integers using their prime _
factorizations is not efficient because there is no efficient algorithm
for finding the prime factorization of a positive integer.

Least Common Multiple

Definition: The least common multiple of the positive
integers a and b is the smallest positive integer that is
divisible by both a and b. It is denoted by Icm(a,b).

The least common multiple can also be computed
from the prime factorizations.

maxi(a;.b max(ao.b: maxia,, .b,
lem(a, b) = piaX(anb1) NaX(az.b2)  MaX(ax,bn)

This number is divided by both a and b and no
smaller number is divided by a and b.



Least Common Multiple

Example: Icm(30, 35) =

Example: lem(233572, 2433) =

LCM and GCD relation

Theorem 5: Let a and b be positive integers. Then
ab = gcd(a,b) -lcm(a,b)

Example: gcd (20,15) - 1cm(20,15)

Proof:

Least Common Multiple

Example: Icm(30, 35) =

5*2*3, 7*5
5*2*3*7 =210

Example: lem(233572, 2433) =

2max(3,4) 3max(5,3) 7max(2,0) = 24 35 72

LCM and GCD relation

Theorem 5: Let a and b be positive integers. Then
ab = gcd(a,b) -lcm(a,b)

Example: gcd (20,15) - 1cm(20,15)
— (51 . 20) . (513122):(5) . (60)
=300
=20-15

Proof:

Note that min(x,y) + max(x,y) =x+vy

one uses the larger exponent and the other one the
smaller exponent, but you get all factors back.



Euclidean Algorithm %4
Euclid

(325 8ce — 265 8ce)
The Euclidian algorithm is an efficient method for
computing the greatest common divisor of two integers. It

is based on the idea that gcd(a,b) is equal to gcd(a,c) when
a > b and c is the remainder when a is divided by b.

Example: Find gcd(91, 287):

° 287 = 91</+/14 Divide 287 by 91
e 01 —/14 6 Divide 91 by 14
e 14=7- 2+O — Divide 14 by 7

Stopping
condition

gcd(287,91) = gcd(91, 14) = gcd(14,7) =7

continued —

Correctness of Euclidean Algorithm

Lemmal: Leta=Dbqg+r,wherea,b,q,andr
are integers. Then gcd(a,b) = gecd(b,r).

Proof:
— Suppose that d divides both a and b.

— Suppose that d divides both b and r.

— Therefore, gcd(a,b) = gcd(b,r).

Euclidean Algorithm

» The Euclidean algorithm expressed in
pseudocode is:

procedure gcd(a, b: positive integers)
X:=a
y:=b
while y #0
r:=xmody
X:=y
yi=r
return x {gcd(a,b) is x}

Correctness of Euclidean Algorithm

Lemma 1: Leta=bq +r, where a, b, g, and r
are integers. Then gcd(a,b) = gecd(b,r).
Proof:

— Suppose that d divides both a and b.

Then d also divides a — bg = r (by Theorem 1 of
Section 4.1). Hence, any common divisor of a and b
must also be any common divisor of b and r.

— Suppose that d divides both b and r.

Then d also divides bqg + r = a. Hence, any common
divisor of a and b must also be a common divisor of
bandr.

— Therefore, gcd(a,b) = gcd(b,r).



Correctness of Euclidean Algorithm

Suppose that a and b are positive ry =rq,+r, 0< r,<ry,
integers with a > b. r. =r.d.+r 0<ry,<r
Letro=aandr, =h. t 202713 -3
Successive applications of the division
algorithm yields:

I"n-Z = rn-1qn-1 + r‘2 0 = r‘n < rn-li

IFn-l = rnQn '

Eventually, a remainder of zero occurs in the sequence of terms: a=r,>r,
>r,>--+ = 0.The sequence can’t contain more than a terms.

gcds as Linear Combinations

Etienne Bézout
(1730-1783)

Bézout’s Theorem: If a and b are positive integers, then
there exist integers s and t such that gcd(a,b) =sa + th.

(proof in exercises of Section 5.2)

Definition: If a and b are positive integers, then integers
s and t such that gcd(a,b) = sa + tb are called Bézout
coefficients of a and b. The equation gcd(a,b) =sa + tb
is called Bézout’s identity.

» By Bézout’s Theorem, the gcd of integers a and b can
be expressed in the form sa + tb where sand t are
integers. This is a linear combination with integer
coefficients of a and b.

— gcd(6,14) =

Correctness of Euclidean Algorithm

Suppose that a and b are positive ry =rq,+r, 0< r, <ry,
integers with a > b. r. =r.d. +r 0<ry,<r
Letro=aandr, =h. t 202713 -3y
Successive applications of the division
algorithm yields:

I"n-Z = rn-1qn-1 + r‘2 0 = rn < rn-li

IFn-l = rnQn '

Eventually, a remainder of zero occurs in the sequence of terms: a=r,>r,

>r,>+-+ = 0. The sequence can’t contain more than a terms.
By Lemma 1
ged(a,b) = ged(ry,ry) = - - - = ged(r;,.4,17) = ged(r,, 0) = 13,

<

Hence the greatest common divisor is the last nonzero remainder in
the sequence of divisions.

gcds as Linear Combinations

Etienne Bézout
(1730-1783)

Bézout’s Theorem: If a and b are positive integers, then
there exist integers s and t such that gcd(a,b) =sa + th.
(proof in exercises of Section 5.2)
Definition: If a and b are positive integers, then integers
s and t such that gcd(a,b) = sa + tb are called Bézout
coefficients of a and b. The equation gcd(a,b) =sa + tb
is called Bézout’s identity.

» By Bézout’s Theorem, the gcd of integers a and b can
be expressed in the form sa + tb where sand t are

integers. This is a linear combination with integer
coefficients of a and b.

— gcd(6,14) =
=2
=(-2)6+1-14




Finding gcds as Linear Combinations
Example: Express gcd(252,198) = 18 as a linear combination
of 252 and 198.

Solution: First use the Euclidean algorithm to show
gcd(252,198) = 18

- Now working backwards, from iii and i above

- Substituting the 214 equation into the 15t yields:

- Substituting 54 = 252 — 1-198 (from 1)) yields:

» This method illustrated above is a two pass method. It first uses
the Euclidian algorithm to find the gcd and then works
backwards to express the gcd as a linear combination of the
original two integers.

Consequences of Bézout’s Theorem

Lemma 2: If a, b, and c are positive integers such that gcd(a, b)
=1landa]bc,thena]c.

Proof: Assume gcd(a, b) =1 and a|bc

— Since gecd(a, b) =1, by Bézout’s Theorem there are integers s and
t such that

sa+th=1.

Lemma 3: If pis prime and p|a,a,a,, thenp|a; for some .

(proof uses mathematical induction; see Exercise 64 of Section
5.1)

Lemma 3 is crucial in the proof of the uniqueness of prime
factorizations.

Finding gcds as Linear Combinations

Example: Express gcd(252,198) = 18 as a linear combination
of 252 and 198.

Solution: First use the Euclidean algorithm to show
gcd(252,198) = 18
i. 252=1-198 4+ 54
il. 198 =3-54 + 36
iii. 54=1-36+18
iv. 36=2-18
- Now working backwards, from
e 18=54—-1-36
¢ 36=198— 3-54
- Substituting the 214 equation into the 15t yields:
e 18=54—-1-(198—- 3-54)=4-54— 1-198
- Substituting 54 = 252 — 1-198 (from 1)) yields:
e 18=4-(252—- 1-198)— 1-198=4-252—- 5-198

and i above

* This method illustrated above is a two pass method. It first uses

the Euclidian algorithm to find the gcd and then works
backwards to express the gcd as a linear combination of the
original two integers.

Consequences of Bézout’s Theorem

Lemma 2: If a, b, and c are positive integers such that gcd(a, b)
=1landa]bc,thena]c.

Proof: Assume gcd(a, b) =1 and a|bc

— Since gecd(a, b) =1, by Bézout’s Theorem there are integers s and
t such that

sa+th=1.
— Multiplying both sides of the equation by c, yields sac + tbc = c.
— From Theorem 1 of Section 4.1:
a|thc (partii)and adivides sac + thc since a | sac and a|tbc (part i)
— We conclude a | c, since sac + thc =c.

Lemma 3: If pis prime and p|a,a,a,, thenp|a; for some .

(proof uses mathematical induction; see Exercise 64 of Section
5.1)

Lemma 3 is crucial in the proof of the uniqueness of prime
factorizations.

<4



Uniqueness of Prime Factorization

» We will prove that a prime factorization of a positive integer
where the primes are in nondecreasing order Is unique. (This is
part of the fundamental theorem of arithmetic. The other part,
which asserts that every positive integer has a prime
factorization into primes, will be proved in Section 5.2.)

Proof: (by contradiction) Suppose that the positive integer n can
be written as a product of primes in two distinct ways:

n=p;p; - ps andn=qq, - p,.
— Remove all common primes from the factorizations to get

PiyPis - Pi, = @iy iz~ Gy
— By Lemma 3, it follows that p;, divides q;, , for some k,

contradicting the assumption that i, and @, are distinct
primes.

— Hence, there can be at most one factorization of n into primes in
nondecreasing order.

Dividing Congruences by an Integer

<

 Dividing both sides of a valid congruence by an integer

does not always produce a valid congruence (see
Section 4.1).

* But dividing by an integer relatively prime to the
modulus does produce a valid congruence:

Theorem 7: Let m be a positive integer and let a, b,
and ¢ be integers. If ac = bc (mod m) and gcd(c,m) =
then a= b (mod m).

Proof: Since ac = bc (mod m), m |ac — bc =c(a—b)
by Lemma 2 and the fact that gcd(c,m) = 1, it follows
that m|a—b.

Hence, a = b (mod m). <

1,

Dividing Congruences by an Integer

« Dividing both sides of a valid congruence by an integer
does not always produce a valid congruence (see
Section 4.1).

* But dividing by an integer relatively prime to the
modulus does produce a valid congruence:

Theorem 7: Let m be a positive integer and let a, b,

and ¢ be integers. If ac = bc (mod m) and gcd(c,m) =1,

then a= b (mod m).
Proof:

Chap 4.4 - Linear Congruences

Definition: A congruence of the form
ax = b('mod m),

where m is a positive integer, a and b are integers, and x is a variable, is
called a linear congruence.

 The solutions to a linear congruence ax= b( mod m) are all integers x
that satisfy the congruence.

Definition: An integer a such that @a = 1( mod m) is said to be an
inverse of a modulo m.

Example: What is the inverse of 3 modulo 7?

» One method of solving linear congruences makes use of an inverse a,
if it exists. Although we can not divide both sides of the congruence by
a, we can multiply by a to solve for x.



Chap 4.4 - Linear Congruences

Definition: A congruence of the form
ax = b('mod m),
where m is a positive integer, a and b are integers, and x is a variable, is
called a linear congruence.

 The solutions to a linear congruence ax= b( mod m) are all integers x
that satisfy the congruence.

Definition: An integer a such that @a = 1( mod m) is said to be an
inverse of a modulo m.

Example: What is the inverse of 3 modulo 7?
5 is an inverse of 3 modulo 7 since 5-:3 = 15 = 1(mod 7)

» One method of solving linear congruences makes use of an inverse a,
if it exists. Although we can not divide both sides of the congruence by
a, we can multiply by a to solve for x.

Inverse of a modulo m

» The following theorem guarantees that an inverse of a modulo
m exists whenever a and m are relatively prime. Two integers a
and b are relatively prime when gcd(a,b) = 1.

Theorem 1: If a and m are relatively prime integers and m > 1,
then an inverse of a modulo m exists. Furthermore, this inverse
is unique modulo m. (This means that there is a unique positive
integer a less than m that is an inverse of a modulo m and every
other inverse of a modulo m is congruent to @ modulo m.)
Proof: Since gcd(a,m) = 1, by Theorem 6 of Section 4.3, there
are integers sand tsuch that sa+tm=1.

— Hence, sa+tm =1 ( mod m).

— Since tm = 0 ( mod m), it follows that sa = 1 ( mod m)
— Consequently, s is an inverse of a modulo m.

— The uniqueness of the inverse is Exercise 7.

Inverse of a modulo m

 The following theorem guarantees that an inverse of a modulo
m exists whenever a and m are relatively prime. Two integers a
and b are relatively prime when gcd(a,b) = 1.

Theorem 1: If a and m are relatively prime integers and m > 1,
then an inverse of a modulo m exists. Furthermore, this inverse
is unique modulo m. (This means that there is a unique positive
integer a less than m that is an inverse of a modulo m and every
other inverse of a modulo m is congruent to @ modulo m.)

Proof: Since gcd(a,m) = 1, by Theorem 6 of Section 4.3, there
are integers sand tsuch that sa+tm=1.

Finding Inverses

» The Euclidean algorithm and Bézout coefficients gives us
a systematic approaches to finding inverses.
Example: Find an inverse of 3 modulo 7.
Solution: Because gcd(3,7) = 1, by Theorem 1, an inverse
of 3 modulo 7 exists.

Using the Euclidian algorithm to find gcd: 7 =2-3 + 1.

From this equation, we get —2-3 + 1:7 = 1, and see that
—2 and 1 are Bézout coefficients of 3 and 7.

Hence, —2 is an inverse of 3 modulo 7.

Also every integer congruent to —2 modulo 7 is an
inverse of 3 modulo 7, i.e., 5, —9, 12, etc.



Finding Inverses

Example: Find an inverse of 101 modulo 4620.

Solution: First use the Euclidian algorithm to show that
gcd(101,4620) = 1.

Working Backwards:

Finding Inverses

Example: Find an inverse of 101 modulo 4620.
Solution: First use the Euclidian algorithm to show that
gcd(101,4620) = 1.

Working Backwards:
4620 = 45101 + 75 1=3-12

101=1-75+26 1=3-1(23- 73)=—-1:23+83
75=226+23 1=-1-23+8:(26 —1-23) =8:26 — 923
26=1-23+3 1=826—-9(75—-2:26 )= 2626 —9-75
23=7-3+2 1=26:(101—-1-75)—-9-75

3=12+1 = 26101 — 3575

2=21 1=26-101 —35-(4620 — 45-101)

=—354620 + 1601-101

Since the last nonzero
remainder is 1,
gcd(101,4620) =1

Bézout coefficients :
—35and 1601 of 101 modulo
4620

1601 is an inverse




