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Announcements

• No Recitation tomorrow or next Friday
• Recitations start back after spring break

Chap 4.3 - Primes
   Definition: A positive integer p greater than 

1 is called prime if the only positive factors 
of p are 1 and p. A positive integer that is 
greater than 1 and is not prime is called 
composite.

   Example:  The integer 7 is prime because 
its only positive factors are 1 and 7, but 9
is composite because it is divisible by 3. 

The Fundamental Theorem of 
Arithmetic

   Theorem: Every positive integer greater than 
1 can be written uniquely as a prime or as the 
product of two or more primes where the 
prime factors are written in order of 
nondecreasing size. 

    Examples:
– 105 =              5    
– 641 =              641 
–  =              13  
–  =            10  



The Fundamental Theorem of 
Arithmetic

   Theorem: Every positive integer greater than 
1 can be written uniquely as a prime or as the 
product of two or more primes where the 
prime factors are written in order of 
nondecreasing size. 

    Examples:
– 105 =              3 5 7 
– 641 =              641 
–  =              13  
–  10  

The Sieve of Erastosthenes
Erastothenes
( -194 B.C.)

• The Sieve of Erastosthenes can be used to find all 
primes not exceeding a specified positive integer. 
For example, begin with the list of integers between 
1 and 100.
a. Delete all  the integers, other than , divisible by .
b. Delete all the integers, other than 3, divisible by 3.
c. Next, delete all the integers, other than 5, divisible by 

5.
d. Next, delete all the integers, other than 7, divisible by 

7.
e. Since all the remaining integers  are not divisible by 

any of the previous integers, other than 1, the primes 
are:

continued 

The Sieve of Erastosthenes
If an integer n is a composite integer, then it has a prime 
divisor less than or equal to n.

To see this, note that if n = ab, then a n or b n.

Trial division, a very inefficient method of determining if a 
number n is prime, is to try every integer i n and see if 
n is divisible by i.

In previous example, why did we use only 2, 3, 5 and 7?



Infinitude of Primes
Theorem: There are infinitely many primes. (Euclid)

    Proof:  Assume finitely many primes:  p1, p2, ….., pn

– Let q = p1p ··· pn + 1 
– Either q is prime or by the fundamental theorem of 

arithmetic it is a product of primes. 
• But none of the primes pj divides q since if  pj | q, then pj

divides                                              q p1p2··· pn = 1 .
• Hence, there is a prime not on the list p1, p2, ….., pn. It is 

either q, or if q is composite, it is a prime factor of q.
This contradicts the assumption that  p1, p2, ….., pn are 
all the primes. 

– Consequently, there are infinitely many primes.

Euclid 
( B.C.E. – B.C.E.)

This proof was given by Euclid  The Elements. The proof is considered to be one of the 
most beautiful in all  mathematics.  It is  the first proof in The Book, inspired by the 
famous mathematician Paul Erd s’ imagined collection of perfect proofs maintained by 
God.

Paul  Erd s
(1913-1996) 

Mersenne Primes
Definition: Prime numbers of the form p 1 , where p
is prime, are called Mersenne primes.
– 1  = 3, 3 1  = 7, 5 1  = 37 , and  7 1  = 

are Mersenne primes. 
– 11 1  =   is not a Mersenne prime 

 
– There is an efficient test for determining if p 1  is 

prime. 
– The largest known prime numbers are Mersenne primes. 
– Mersenne primes were known, the 

 1, which has nearly 13 million 
decimal digits. 

– The Great Internet Mersenne Prime Search (GIMPS) is a 
distributed computing project to search  for new 
Mersenne Primes. 

                   http://www.mersenne.org/ 
 

Marin Mersenne
(1588-1648)

Distribution of Primes
• Mathematicians have been interested in the 

distribution of prime numbers among the positive 
integers. In the nineteenth century, the prime
number theorem was proved which gives an 
asymptotic estimate for the number of primes not 
exceeding x.

    Prime Number Theorem: The ratio of the number 
of primes not exceeding x and x/ln x approaches 1 as
x grows without bound. (ln x is the natural logarithm 
of x)
– The theorem tells us that the number of primes not 

exceeding x, can be approximated by x/ln x.
– The odds that a randomly selected positive integer less 

than n is prime are approximately (n/ln n)/n = 1/ln n.

Generating Primes

• Finding large primes with hundreds of digits is 
important in cryptography.

• There is no simple  function f(n) such that f(n) is 
prime for all positive integers n.

• Consider
– f(n) = n n + 41 is prime for all integers .
– But f(41) = 41  is not prime.  

• Fortunately, we can generate large integers which 
are almost certainly primes. See Chapter 7.
 



Conjectures about Primes
Many conjectures about them are unresolved, including:

Goldbach’s Conjecture: Every even integer n, n 
sum of two primes. It has been verified  by computer for all 
positive even integers up to  1.6 10 .  The conjecture is 
believed to be true by most mathematicians. 
 
There are infinitely many primes of the form n  + 1, where n 
is a positive integer. But it has been shown that there are 
infinitely many primes  of the form n  + 1, where n is a 
positive  integer or  the product of at most two primes. 
 

• The Twin Prime Conjecture: The twin prime conjecture is that 
there are infinitely many pairs of twin primes. Twin primes 

and 7, 11 and 13, etc. The current world’s record for twin 
33,333 ±1, which have 100,355 decimal 

digits. 
 

Greatest Common Divisor
   Definition: Let a and b be integers, not both zero. The largest 

integer d such that d | a and also d | b is called the greatest 
common divisor of a and b. The  greatest common divisor of a
and b is denoted by gcd(a,b).

    
    One can find greatest common divisors of small numbers by 

inspection.
   Example:What is the greatest common divisor of and 36?
    Solution: gcd( ) =  
    Example:What is the greatest common divisor of 17 and ?
    Solution: gcd( ) = 1 
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Greatest Common Divisor
Definition: The integers a and b are relatively prime if
their greatest common divisor is 1.  

Example: 17 and  
        gcd

Definition: The integers a1, a , …, an are pairwise
relatively prime if gcd(ai, aj)= 1 whenever 1 i<j n.

Example: Determine whether the integers 10, 17 and 
are pairwise relatively prime.

    Solution: Because gcd(10,17) = 1, gcd
and gcd pairwise 
relatively prime.

Example: Determine whether the integers 10, 19, and 
pairwise relatively prime. 

   Solution: Because gcd
not pairwise relatively prime.  
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Finding the Greatest Common 
Divisor Using Prime Factorizations

• Suppose  the prime factorizations of a and b are:

    where each exponent is a nonnegative integer, and where all primes 
occurring in either prime factorization are included in both. Then:

    
• This formula is valid since the integer  on the right (of the equals 

sign) divides both a and b. No larger integer can divide both a and b.
•
     Example:    = 3 500 =   3  
        gcd( ,500) =  min(1,0) min(1,3) =  0 1  
• Finding the gcd of two positive integers using their prime 

factorizations is not efficient because there is no efficient algorithm 
for finding the prime factorization of a positive integer.
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Least Common Multiple
           Definition: The least common multiple of the positive 

integers a and b is the smallest  positive integer that is 
divisible by both a and b. It is denoted by lcm(a,b). 

• The least common multiple can also be computed 
from the prime factorizations. 

    This number is divided by both a and b and no 
smaller number  is divided by a and b.

      

 
 
 



Least Common Multiple

Example:  lcm(30, 35) =
    5*2*3, 7*5
   5*2*3*7 = 210

Example:  lcm( 3357 , 433) = 
                          3  7  = 4 35 7  

  

Least Common Multiple

Example:  lcm(30, 35) =
    5*2*3, 7*5
   5*2*3*7 = 210

Example:  lcm( 3357 , 433) = 
                          3  7  = 4 35 7  

  

LCM and GCD relation
     Theorem 55: Let a and b be positive integers. Then
                ab = gcd(a,b) a,b) 
 
    gcd     
           = 5 (5 3 )=(5)  (60)  
            = 300 
             15 
 
    Proof:  
     Note that min(  
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Euclidean Algorithm

• The Euclidian algorithm is an efficient method for  
computing the greatest common divisor of two integers. It 
is based on the idea that gcd(a,b) is equal to gcd(a,c) when 
a > b and c is the remainder when a is divided by b.

   Example: Find  gcd(91, ):
 

•  
•  

 
gcd( , 91) = gcd(91, 14) =  gcd(14, 7)  = 7 

Euclid 
( B.C.E. – B.C.E.)

Stopping 
condition

Divide by 91 

Divide 91 by 14 

Divide 14 by 7 

continued 

Euclidean Algorithm
• The Euclidean algorithm expressed in 

pseudocode is:

procedure gcd(a, b: positive integers)
x := a
y := b 
while   y 0
       r := x mod y
       x := y
       y := r
return x {gcd(a,b) is x}

Correctness of Euclidean Algorithm 
Lemma 11: Let a = bq + r, where a, b, q, and r
are integers. Then gcd(a,b) = gcd(b,r).
Proof:

– Suppose that d divides both a and b.
Then d also divides a bq = r (by Theorem 1 of 
Section 4.1). Hence, any common divisor of a and b
must also be any  common divisor of b and r.
– Suppose that d divides both b and r.
Then d also divides bq + r = a. Hence, any common 
divisor of a and b must also be a common divisor of 
b and r.
– Therefore, gcd(a,b) = gcd(b,r).

Correctness of Euclidean Algorithm 
Lemma 11: Let a = bq + r, where a, b, q, and r
are integers. Then gcd(a,b) = gcd(b,r).
Proof:

– Suppose that d divides both a and b.
Then d also divides a bq = r (by Theorem 1 of 
Section 4.1). Hence, any common divisor of a and b
must also be any  common divisor of b and r.
– Suppose that d divides both b and r.
Then d also divides bq + r = a. Hence, any common 
divisor of a and b must also be a common divisor of 
b and r.
– Therefore, gcd(a,b) = gcd(b,r).



Correctness of Euclidean Algorithm 
• Suppose that a and b are positive 
      integers  with a b.  
       Let r0 = a and r1 = b.
      Successive applications of the division 
      algorithm   yields:

• Eventually, a remainder of zero occurs in the sequence of terms:  a = r0 > r1
> r  > a terms. 
By Lemma 1 

      gcd(a,b) = gcd(r0,r1) = gcd(rn-1,rn) = gcd(rn , 0) = rn. 
Hence the greatest common divisor is the last nonzero remainder in 

            

r0 = r1q1 + r 0 r < r1,
r1 = r q + r3 0 r3 < r ,

 
         
        
rn-  = rn-1qn-1 + r 0 rn < rn-1,
rn-1 = rnqn .
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gcds as Linear Combinations

Béézout’s Theorem: If a and b are positive integers, then 
there exist integers s and t such that  gcd(a,b) = sa + tb.

    (proof  in exercises of Section )
    Definition: If a and b are positive integers, then integers 

s and t such that  gcd(a,b) = sa + tb are called Bézout
coefficients of a and b. The equation  gcd(a,b) = sa + tb
is called Bézout’s identity. 

• By Bézout’s Theorem,  the gcd of integers a and b can 
be expressed in the form  sa + tb where s and t are
integers. This is a linear combination with integer 
coefficients of a and b.
– gcd(6,14)  =
                      =  2
                      = (  

Étienne Bézout
(1730- )

gcds as Linear Combinations

Béézout’s Theorem: If a and b are positive integers, then 
there exist integers s and t such that  gcd(a,b) = sa + tb.

    (proof  in exercises of Section )
    Definition: If a and b are positive integers, then integers 

s and t such that  gcd(a,b) = sa + tb are called Bézout
coefficients of a and b. The equation  gcd(a,b) = sa + tb
is called Bézout’s identity. 

• By Bézout’s Theorem,  the gcd of integers a and b can 
be expressed in the form  sa + tb where s and t are
integers. This is a linear combination with integer 
coefficients of a and b.
– gcd(6,14)  =
                      =  2
                      = (  

Étienne Bézout
(1730- )



Finding gcds as Linear Combinations
   Example: Express gcd( , ) = 

 
    Solution: First use the Euclidean algorithm to show 

gcd( , ) =  
i.  
ii.   
iii. 54 = 1  
iv.   

– Now working backwards, from  iii and i above  
  

  
– nd st yields: 

     
–  i)) yields: 

       
• This method illustrated above is a two pass method. It first uses 

the Euclidian algorithm to find the gcd and then works 
backwards to express the gcd as a linear combination of the 
original two integers.  
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    4 5  
• This method illustrated above is a two pass method. It first uses 

the Euclidian algorithm to find the gcd and then works 
backwards to express the gcd as a linear combination of the 
original two integers.  

Consequences of Bézout’s Theorem
   Lemma : If a, b, and c are positive integers such that gcd(a, b)

= 1 and a | bc, then a | c.
   Proof:  Assume gcd(a, b) = 1 and a | bc

– Since gcd(a, b) = 1, by Bézout’s Theorem  there are integers s and 
t such that    

                           sa + tb = 1.
– Multiplying both sides of the equation by c, yields sac + tbc = c.
– From Theorem 1 of Section 4.1:

a | tbc   (part ii) and a divides sac + tbc since a | sac and a|tbc (part i)
– We conclude a | c, since sac + tbc = c.

    Lemma 3: If p is prime and  p | a1a an, then p | ai for some i.
   (proof uses mathematical induction; see Exercise 64 of Section 

5.1)

• Lemma 3 is crucial in the proof of the uniqueness of prime 
factorizations.
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Uniqueness of Prime Factorization
• We will prove that a prime factorization of a positive integer  

where the primes are in nondecreasing order is unique. (This is 
part of the fundamental theorem of arithmetic. The other part, 
which asserts that every positive integer has a prime 
factorization into primes, will be proved in Section .)

     Proof: (by contradiction) Suppose that the positive integer n can 
be written as a product of primes in two distinct ways:

                       n = p1p ps and n = q1q pt.
– Remove all common primes from the factorizations to get

– By Lemma 3, it follows that         divides          , for some k,
contradicting the assumption that          and         are distinct 
primes.

– Hence, there can be at most one factorization of n into primes in 
nondecreasing order.

         
       

Dividing Congruences by an Integer
• Dividing both sides of a valid congruence by an integer 

does not always produce a valid congruence (see 
Section 4.1).

• But dividing by an integer relatively prime to the 
modulus does produce a valid congruence:  

    Theorem 7: Let m be a positive integer and let a, b, 
and c be integers. If ac bc (mod m) and gcd(c,m) = 1, 
then a  b (mod m). 

      Proof: Since ac bc (mod m), m | ac bc = c(a b)
    by Lemma and the fact that gcd(c,m) = 1, it follows 

that   m | a b.
    Hence, a  b (mod m).

Dividing Congruences by an Integer
• Dividing both sides of a valid congruence by an integer 

does not always produce a valid congruence (see 
Section 4.1).

• But dividing by an integer relatively prime to the 
modulus does produce a valid congruence:  

    Theorem 7: Let m be a positive integer and let a, b, 
and c be integers. If ac bc (mod m) and gcd(c,m) = 1, 
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      Proof: Since ac bc (mod m), m | ac bc = c(a b)
    by Lemma and the fact that gcd(c,m) = 1, it follows 

that   m | a b.
    Hence, a  b (mod m).

Chap 4.4 - Linear Congruences
   Definition: A congruence of the form                          
                        ax b( mod m),
    where m is a positive integer, a and b are integers, and x is a variable, is 

called a linear congruence.

• The solutions to a linear congruence ax b( mod m) are  all integers x
that satisfy the congruence.

   Definition: An integer such that 1( mod m) is said to be an 
inverse of a modulo m.

   Example:  What is the inverse of 3 modulo 7?
           5 is an inverse of 3 modulo 7 since 5 3 = 15 1(mod 7)

• One method of solving linear congruences makes use of  an inverse ,
if it exists. Although we can not divide both sides of the congruence by 
a, we can multiply by to solve for x.
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a, we can multiply by to solve for x.

Inverse of a modulo m
• The following theorem guarantees that an inverse of a modulo 

m exists whenever a and m are relatively prime.  Two integers a
and b are relatively prime when gcd(a,b) = 1.

   Theorem 11: If a and m are relatively prime integers and m > 1,
then an inverse of a modulo m exists. Furthermore, this inverse 
is unique modulo m. (This means that there is a unique positive 
integer less than m that is an inverse of a modulo m and every 
other inverse of a modulo m is congruent to modulo m.)   

    Proof:  Since gcd(a,m) = 1, by Theorem 6 of Section 4.3, there 
are integers  s and t such that   sa + tm = 1.
– Hence, sa + tm  1 ( mod m).
– Since tm  0 ( mod m), it follows that sa  1 ( mod m)
– Consequently, s is an inverse of a modulo m.
– The uniqueness of the inverse is Exercise 7.
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Finding Inverses
• The Euclidean algorithm and Bézout coefficients gives us 

a systematic approaches to finding inverses. 
Example: Find an inverse of 3 modulo 7.
Solution: Because gcd(3,7) = 1, by Theorem 1, an inverse 
of 3 modulo 7 exists. 
– Using the Euclidian algorithm to find gcd: 7 = 3 + 1. 
–  From this equation, we get  3 + 1 7 = 1, and see that 

Bézout coefficients of 3 and 7. 
–  Hence,   
– Also every integer congruent to 

inverse of 3 modulo 7, i.e., 5,  



Finding Inverses
Example: Find an inverse of 101 modulo .
Solution: First use the Euclidian algorithm to show that  
gcd( ) = 1.

 
 = 45 101 + 75 

101 = 1 75 +  
75 = +  

= 1 + 3 
= 7 3 +  

3 = 1 + 1 
1 

Since the last nonzero 
remainder is 1,
gcd( ) = 1 

1 = 3  1  
1 = 3  1  7 3) =  1 3 
1 = 1 1  9  

 9 (75   9 75 
(101 1 75)  9 75  

           101  35 75 
101  35 45 101)  

       =  35 + 1601 101 

Working Backwards:

Bézout coefficients :  
 35 and 1601

1601 is an inverse 
of 101 modulo 
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