CompSci 102 Discrete Math for Computer Science

Integers divisible by 2 other than 2 receive an underline.						Integers divisible by 3 other than 3 receive an underline.													
1	2	3	4	5	6	7	- 8	9	10	1	2	3	4	5	6	7		9	10
11	12	13	14	15	16	17	18	19	20	11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30	21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40	31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50	41	42	43	44	45	46	47	48	49	50
51	52	53	54	55	56	57	32	59	60	51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70	61	62	63	64	65	66	67	68	69	70
71	72	73	74	75	76	77	78	79	80	71	72	73	74	75	76	77	28	29	80
81	82	83	84	85	86	87	88	89	90	81	82	83	84	85	86	87	88	89	90
91	92	93	94	95	96	97	95	99	100	91	22	93	94	95	96	97	98	99	100
	gers	divisi	ble b	750	her t	han 5				In	ieger	s divi	sible	by 7.	other	than	7 rec	eire	
neo	tive a	n 110	lerlis	tr.						-	und	erline	; inte	gers	in co	lor ar	re pris	me.	
1	rive a 2	т ит 3	terlis 4	te. 5	0	7	8	2	10	ax 1	2	erline 3	; inte 4	gers	in co 6	lor ar	re pri 8	те. 9	10
1				5	0 16	7 17		9 19			2 12	13	4	3	in co 6 16	lor ar 7 17	e pri 8 18		
1	2	3	4				8 18 28		20	1	2	3	4 14 24	5 15 25	- 9	7	8 18 28	2	20
1	2 12	3 13	4 14	5 15	1 <u>6</u> 2 <u>6</u>	17	18	19	20 30	1	2 12	3 13	4 14	3 15	<u>6</u> 16	7 17	8 18	9 19	20 30 40
1 11 21 31	2 12 22	3 13 23	4 14 24	5 15 25	16	17 <u>27</u>	18 28	19 29	20 30 40	1 11 21	2 12 22 32	3 13 23	4 11 21	5 15 25	0 16 20	7 17 27	8 18 28	9 19 29	20 30 40
1 11 21 31 41	2 12 22 32	3 13 23 31	4 14 24 24	5 15 25 35	10 20 36	17 <u>27</u> 37	18 28 28	19 29 39	20 30	1 11 21 31	2 12 22	3 13 23 23	* 1121 21	5 15 25 35	01 10 10 10	7 17 27 37	8 18 28 38	9 19 29 19	20 30 40
1 11 21 31 41 51	2 12 22 32 42 52	3 13 23 <u>31</u> 43 53	4 14 24 14 14 14 14 14	5 15 25 35 45 55	10 10 10 10 10	17 27 37 47	話話話	19 29 <u>39</u> 49 59	20 20 20 20 20 20 20 20 20 20 20 20 20 2	1 11 21 31 41	2 12 22 22 22 22 22 22 22 22 22	3 13 20 <u>33</u> 43 53	* 의지 지 지	5 15 25 35 45 55	18 年18 以 E 19	7 17 <u>27</u> 37 47	8 18 28 38 48	9 19 29 19 19 19 19 19 19 19	20 20 20 20 20 20 20 20 20 20 20 20 20 2
1 11 21 11 11 11 11 11 11 11 11 11 11 11	2 12 22 32 42 52 62	3 13 23 31 43 53 63	* 1 2 2 2 4 2 3 3	5 11 12 13 13 14 15 15 15 15 15 15 15 15 15 15 15 15 15	12 12 13 14 15 12	17 27 37 47 57 67	13 25 25 25 25 25	19 29 39 49 59 59 59 59 59 59	20 30 40 50 60 70	1 11 21 31 41 51 61	2 12 22 22 42 152 62	3 13 20 23 43 53 63	* 의원 관육 원 중	5 15 25 35 45 55 65	· 18 16 年18 以口(a)	7 17 27 37 47 57 67	8 18 28 28 49 50	9 19 29 辺 辺 9 9 29 辺 9 9 29 辺 9 9 29 辺 9 29 29 29 29 29 29 29 29 29 29 29 29 2	20 301 40 50 60 700
	2 12 22 32 42 52	3 13 23 <u>31</u> 43 53	4 14 24 14 14 14 14 14	5 15 25 35 45 55	10 10 10 10 10	17 27 37 47 57	調査が利用	19 29 <u>39</u> 49 59	20 20 20 20 20 20 20 20 20 20 20 20 20 2	1 11 21 31 41 51	2 12 22 22 22 22 22 22 22 22 22	3 13 20 <u>33</u> 43 53	* 의지 지 지	5 15 25 35 45 55	18 年18 以 E 19	7 17 2 <u>7</u> 37 47 5 <u>7</u>	8 18 28 28 49 50	9 19 29 19 19 19 19 19 19 19	20 20 20 20 20 20 20 20 20 20 20 20 20 2

February 23, 2012

Prof. Rodger

Announcements

- No Recitation tomorrow or next Friday
- Recitations start back after spring break

Chap 4.3 - Primes

Definition: A positive integer p greater than 1 is called *prime* if the only positive factors of p are 1 and p. A positive integer that is greater than 1 and is not prime is called *composite*.

Example: The integer 7 is prime because its only positive factors are 1 and 7, but 9 is composite because it is divisible by 3.

The Fundamental Theorem of Arithmetic

Theorem: Every positive integer greater than 1 can be written uniquely as a prime or as the product of two or more primes where the prime factors are written in order of nondecreasing size.

Examples:

- 105 =
- 641 =
- 221 =
- 1024 =

The Fundamental Theorem of Arithmetic

Theorem: Every positive integer greater than 1 can be written uniquely as a prime or as the product of two or more primes where the prime factors are written in order of nondecreasing size.

Examples:

- $-105 = 3 \cdot 5 \cdot 7$
- 641 = 641
- $-221 = 13 \cdot 17$

Integers divisible by 2 other than 2 receive an underline.							Integers divisible by 3 other than 3 receive an underline.												
1	2	3	4	5	<u>6</u>	7	8	9	<u>10</u>	I	2	3	4	5	6	7	8	2	<u>10</u>
11	12	13	14	15	16	17	18	19	20	11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30	21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40	31	32	33	34	35	36	37	38	39	40
41	<u>42</u>	43	44	45	46	47	<u>48</u>	49	<u>50</u>	41	<u>42</u>	43	44	45	46	47	48	49	50
51	<u>52</u>	53	54	55	56	57	<u>58</u>	59	60	51	52	53	<u>54</u>	55	56	<u>57</u>	58	59	60
51	<u>62</u>	63	<u>64</u>	65	<u>66</u>	67	<u>68</u>	69	<u>70</u>	61	<u>62</u>	<u>63</u>	<u>64</u>	65	66	67	<u>68</u>	<u>69</u>	70
71	<u>72</u>	73	<u>74</u>	75	<u>76</u>	77	<u>78</u>	79	80	71	72	73	<u>74</u>	<u>75</u>	<u>76</u>	77	78	79	80
81	<u>82</u>	83	84	85	86	87	<u>88</u>	89	90	81	82	83	84	85	86	87	88	89	90
91	<u>92</u>	93	<u>94</u>	95	<u>96</u>	97	<u>98</u>	99	100	91	<u>92</u>	<u>93</u>	<u>94</u>	95	<u>96</u>	97	<u>98</u>	<u>99</u>	100
Integers divisible by 5 other than 5 receive an underline.							Integers divisible by 7 other than 7 receive an underline; integers in color are prime.												
rec	eive a	n une	derlin	e.										*					
reco	eive a 2	n una 3	derlin 4	ie. 5	6	7	8	2	<u>10</u>					*					<u>10</u>
1	0.525	2.5						<u>2</u> 19	Bearing and Concerns.	an	und	erline	; inte	gers	in co	lor ar	e pri	me.	<u>10</u> <u>20</u>
1 11	2	3	4	5	6	7	8		20	an 1	und 2	erline 3	; inte 4	gers 5	in co 6	lor ai 7	e pri	me. 2	_
1 11 21	2 12	3 13	<u>4</u> <u>14</u>	5 15	<u>6</u> <u>16</u> <u>26</u>	7 17	<u>8</u> <u>18</u>	19	<u>20</u> <u>30</u>	1 1	2 12	erline 3 13	; inte 4 <u>14</u>	5 <u>15</u> <u>25</u>	<i>in co</i> <u>6</u> <u>16</u> <u>26</u>	lor ai 7 17	e pris <u>8</u> <u>18</u>	me. 2 19	20
1 11 <u>21</u> 31	$\frac{12}{22}$	3 13 23	4 14 24	5 <u>15</u> <u>25</u> <u>35</u>	<u>6</u> <u>16</u>	7 17 <u>27</u>	$\frac{\underline{8}}{\underline{18}}$ $\underline{\underline{18}}$ $\underline{\underline{28}}$ $\underline{\underline{38}}$	19 29	20 30 40	1 11 <u>21</u>	$\frac{12}{22}$ $\frac{12}{32}$	3 13 23	$\frac{4}{\frac{14}{24}}$	5 15 25 35	in co <u>6</u> <u>16</u>	lor av 7 17 <u>27</u>	e pri	2 19 29	20 30 40
1 11 21 31 41	$\begin{array}{c} 2\\ \underline{12}\\ \underline{22}\\ \underline{32}\\ \end{array}$	3 13 23 <u>33</u>	$ \frac{\underline{4}}{\underline{14}} \underline{\underline{24}} \underline{\underline{34}} $	5 <u>15</u> <u>25</u>		7 17 <u>27</u> 37	$\frac{\underline{8}}{\underline{18}}$	19 29 <u>39</u>	<u>20</u> <u>30</u>	1 11 <u>21</u> 31	2 <u>12</u> <u>22</u>	erline 3 13 23 <u>33</u>	$\frac{4}{\frac{14}{24}}$	5 <u>15</u> <u>25</u>	in co <u>6</u> <u>16</u> <u>26</u> <u>36</u>	7 17 <u>27</u> 37	<u>8</u> <u>18</u> <u>28</u> <u>38</u>	9 19 29 <u>39</u>	20 30 40 50 60
1 11 21 31 41 51	$\begin{array}{c} 2\\ \underline{12}\\ \underline{22}\\ \underline{32}\\ \underline{42}\\ \end{array}$	3 13 23 <u>33</u> 43	$ \frac{\underline{4}}{\underline{14}} \underline{\underline{24}} \underline{\underline{34}} \underline{\underline{34}} \underline{\underline{44}} $	5 $\frac{15}{25}$ $\frac{35}{45}$	$ \frac{\underline{6}}{\underline{16}} \underline{26} \underline{36} \underline{46} $	7 17 <u>27</u> 37 47	$ \frac{\underline{8}}{\underline{18}} \underline{\underline{18}} \underline{\underline{28}} \underline{\underline{38}} \underline{\underline{48}} $	19 29 <u>39</u> 49	20 30 40 50	an 1 11 <u>21</u> 31 41	2 12 22 32 42	a 13 23 <u>33</u> 43	$\begin{array}{c} \underline{4} \\ \underline{14} \\ \underline{24} \\ \underline{34} \\ \underline{44} \end{array}$	5 15 25 35 45	$ \frac{6}{16} \\ \frac{16}{26} \\ \frac{36}{46} $	17 17 <u>27</u> 37 47	<i>∎ ∎ ∎ ∎ ∎ ∎ ∎ ∎ ∎ ∎</i>	9 19 29 <u>39</u> <u>49</u>	20 30 40 50 60 70
1 11 2 <u>1</u> 31 41 5 <u>1</u> 61	$\begin{array}{r} 2\\ \underline{12}\\ \underline{22}\\ \underline{32}\\ \underline{42}\\ \underline{52} \end{array}$	3 13 23 <u>33</u> 43 53	$ \frac{4}{14} \frac{14}{24} \frac{34}{44} \frac{44}{54} $	5 <u>15</u> <u>25</u> <u>35</u> <u>45</u> <u>55</u>		7 17 <u>27</u> 37 47 <u>57</u>	$ \frac{\underline{8}}{\underline{18}} \underline{\underline{18}} \underline{\underline{28}} \underline{\underline{38}} \underline{\underline{48}} \underline{\underline{58}} $	19 29 <u>39</u> 49 59	20 30 40 50 60	1 11 <u>21</u> 31 41 <u>51</u>	$\begin{array}{c} 2 \\ \underline{12} \\ \underline{22} \\ \underline{32} \\ \underline{42} \\ \underline{52} \end{array}$	3 13 23 <u>33</u> 43 53	$ \frac{4}{14} \\ \frac{14}{24} \\ \frac{34}{44} \\ \frac{54}{54} $	$\frac{5}{\frac{15}{25}}$ $\frac{35}{45}$ $\frac{55}{55}$	$ \begin{array}{c} \underline{6} \\ \underline{16} \\ \underline{26} \\ \underline{36} \\ \underline{46} \\ \underline{56} \\ \end{array} $	7 17 <u>27</u> 37 47 <u>57</u>	8 18 28 38 48 58	9 19 29 <u>39</u> <u>49</u> 59	20 30 40 50 60
rec 1 11 21 31 41 51 61 71 81	$\begin{array}{r} 2\\ \underline{12}\\ \underline{22}\\ \underline{32}\\ \underline{42}\\ \underline{52}\\ \underline{62} \end{array}$	3 13 23 <u>33</u> 43 53 <u>63</u>	$ \begin{array}{r} \underline{4} \\ \underline{14} \\ \underline{24} \\ \underline{34} \\ \underline{44} \\ \underline{54} \\ \underline{64} \end{array} $	5 <u>15</u> <u>25</u> <u>35</u> <u>45</u> <u>55</u> <u>65</u>	$ \begin{array}{c} \underline{6} \\ \underline{16} \\ \underline{26} \\ \underline{36} \\ \underline{46} \\ \underline{56} \\ \underline{66} \end{array} $	7 17 <u>27</u> 37 47 <u>57</u> 67	$ \frac{\underline{8}}{\underline{18}} \underline{\underline{28}} \underline{\underline{38}} \underline{\underline{48}} \underline{\underline{58}} \underline{\underline{58}} \underline{\underline{68}} $	19 29 <u>39</u> 49 59 <u>69</u>	20 30 40 50 60 70	1 11 21 31 41 51 61	$ \begin{array}{c} 2 \\ \underline{12} \\ \underline{22} \\ \underline{32} \\ \underline{42} \\ \underline{52} \\ \underline{62} \end{array} $	a 13 23 33 43 53 <u>63</u>	$ \begin{array}{c} \frac{4}{14} \\ \frac{14}{24} \\ \frac{34}{44} \\ \frac{54}{64} \end{array} $	5 <u>15</u> <u>25</u> <u>35</u> <u>45</u> <u>55</u> <u>65</u>	in co <u>6</u> <u>16</u> <u>26</u> <u>36</u> <u>46</u> <u>56</u> <u>66</u>	<i>lor a</i> 7 17 <u>27</u> 37 47 <u>57</u> 67	8 18 28 38 48 58 68	9 19 29 <u>39</u> <u>49</u> 59 <u>69</u>	20 30 40 50 60 70

The Sieve of Erastosthenes

Erastothenes (276-194 B.C.)

- The *Sieve of Erastosthenes* can be used to find all primes not exceeding a specified positive integer. For example, begin with the list of integers between 1 and 100.
 - a. Delete all the integers, other than 2, divisible by 2.
 - b. Delete all the integers, other than 3, divisible by 3.
 - c. Next, delete all the integers, other than 5, divisible by 5.
 - d. Next, delete all the integers, other than 7, divisible by 7.
 - e. Since all the remaining integers are not divisible by any of the previous integers, other than 1, the primes are:

 $continued \rightarrow$

The Sieve of Erastosthenes

If an integer *n* is a composite integer, then it has a prime divisor less than or equal to \sqrt{n} .

To see this, note that if n = ab, then $a \le \sqrt{n}$ or $b \le \sqrt{n}$.

Trial division, a very inefficient method of determining if a number *n* is prime, is to try every integer $i \le \sqrt{n}$ and see if n is divisible by *i*.

In previous example, why did we use only 2, 3, 5 and 7?

Infinitude of Primes

Euclid (325 B.C.E. – 265 B.C.E.)

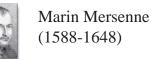
Theorem: There are infinitely many primes. (Euclid)

Proof: Assume finitely many primes: p_1, p_2, \dots, p_n

- Let $q = p_1 p_2 \cdots p_n + 1$
- Either *q* is prime or by the fundamental theorem of arithmetic it is a product of primes.
 - But none of the primes p_j divides q since if $p_j | q$, then p_j divides $q - p_1 p_2 \cdots p_n = 1$.
 - Hence, there is a prime not on the list p₁, p₂,, p_n. It is either q, or if q is composite, it is a prime factor of q. This contradicts the assumption that p₁, p₂,, p_n are all the primes.
- Consequently, there are infinitely many primes.

This proof was given by Euclid *The Elements*. The proof is considered to be one of the most beautiful in all mathematics. It is the first proof in *The Book*, inspired by the famous mathematician Paul Erdős' imagined collection of perfect proofs maintained by God.

Paul Erdős (1913-1996)


Distribution of Primes

• Mathematicians have been interested in the distribution of prime numbers among the positive integers. In the nineteenth century, the *prime number theorem* was proved which gives an asymptotic estimate for the number of primes not exceeding *x*.

Prime Number Theorem: The ratio of the number of primes not exceeding *x* and $x/\ln x$ approaches 1 as *x* grows without bound. (ln *x* is the natural logarithm of *x*)

- The theorem tells us that the number of primes not exceeding x, can be approximated by $x/\ln x$.
- The odds that a randomly selected positive integer less than *n* is prime are approximately $(n/\ln n)/n = 1/\ln n$.

Mersenne Primes

Definition: Prime numbers of the form $2^p - 1$, where *p* is prime, are called *Mersenne primes*.

- $-2^{2}-1 = 3, 2^{3}-1 = 7, 2^{5}-1 = 37$, and $2^{7}-1 = 127$ are Mersenne primes.
- $-2^{11}-1=2047$ is not a Mersenne prime since 2047=23.89.
- There is an efficient test for determining if $2^p 1$ is prime.
- The largest known prime numbers are Mersenne primes.
- As of mid 2011, 47 Mersenne primes were known, the largest is $2^{43,112,609}$ 1, which has nearly 13 million decimal digits.
- The *Great Internet Mersenne Prime Search (GIMPS*) is a distributed computing project to search for new Mersenne Primes.

http://www.mersenne.org/

Generating Primes

- Finding large primes with hundreds of digits is important in cryptography.
- There is no simple function *f*(*n*) such that *f*(*n*) is prime for all positive integers *n*.
- Consider
 - *f*(*n*) = *n*² − *n* + 41 is prime for all integers 1,2,..., 40.
 But *f*(41) = 41² is not prime.
- Fortunately, we can generate large integers which are almost certainly primes. See Chapter 7.

Conjectures about Primes

Many conjectures about them are unresolved, including:

- *Goldbach's Conjecture*: Every even integer *n*, n > 2, is the sum of two primes. It has been verified by computer for all positive even integers up to $1.6 \cdot 10^{18}$. The conjecture is believed to be true by most mathematicians.
- There are infinitely many primes of the form $n^2 + 1$, where n is a positive integer. But it has been shown that there are infinitely many primes of the form $n^2 + 1$, where n is a positive integer or the product of at most two primes.
- The Twin Prime Conjecture: The twin prime conjecture is that there are infinitely many pairs of twin primes. Twin primes are pairs of primes that differ by 2. Examples are 3 and 5, 5 and 7, 11 and 13, etc. The current world's record for twin primes (as of mid 2011) consists of numbers $65,516,468,355\cdot23^{33,333}\pm1$, which have 100,355 decimal digits.

Greatest Common Divisor

Definition: Let *a* and *b* be integers, not both zero. The largest integer *d* such that $d \mid a$ and also $d \mid b$ is called the greatest common divisor of *a* and *b*. The greatest common divisor of *a* and *b* is denoted by gcd(a,b).

One can find greatest common divisors of small numbers by inspection. **Example**:What is the greatest common divisor of 24 and 36?

Example: What is the greatest common divisor of 17 and 22?

Greatest Common Divisor

Definition: Let *a* and *b* be integers, not both zero. The largest integer *d* such that $d \mid a$ and also $d \mid b$ is called the greatest common divisor of *a* and *b*. The greatest common divisor of *a* and *b* is denoted by gcd(a,b).

One can find greatest common divisors of small numbers by inspection.

Example:What is the greatest common divisor of 24 and 36? **Solution**: gcd(24,36) = 12

Example:What is the greatest common divisor of 17 and 22? **Solution**: gcd(17,22) = 1

Greatest Common Divisor

Definition: The integers *a* and *b* are *relatively prime* if their greatest common divisor is 1. **Example**: 17 and 22

Definition: The integers $a_1, a_2, ..., a_n$ are *pairwise relatively prime* if $gcd(a_i, a_j) = 1$ whenever $1 \le i < j \le n$. **Example**: Determine whether the integers 10, 17 and 21 are pairwise relatively prime. **Solution**:

Example: Determine whether the integers 10, 19, and 24 are pairwise relatively prime. **Solution**:

Greatest Common Divisor

Definition: The integers *a* and *b* are *relatively prime* if their greatest common divisor is 1.

Example: 17 and 22

gcd(17, 22) = 1

Definition: The integers $a_1, a_2, ..., a_n$ are *pairwise* relatively prime if $gcd(a_i, a_j)=1$ whenever $1 \le i < j \le n$.

Example: Determine whether the integers 10, 17 and 21 are pairwise relatively prime.

Solution: Because gcd(10,17) = 1, gcd(10,21) = 1, and gcd(17,21) = 1, 10, 17, and 21 are pairwise relatively prime.

Example: Determine whether the integers 10, 19, and 24 are pairwise relatively prime.

Solution: Because gcd(10,24) = 2, 10, 19, and 24 are not pairwise relatively prime.

Finding the Greatest Common Divisor Using Prime Factorizations

• Suppose the prime factorizations of *a* and *b* are:

 $a = p_1^{a_1} p_2^{a_2} \dots p_n^{a_n}$, $b = p_1^{b_1} p_2^{b_2} \dots p_n^{b_n}$,

where each exponent is a nonnegative integer, and where all primes occurring in either prime factorization are included in both. Then:

$$gcd(a,b) = p_1^{\min(a_1,b_1)} p_2^{\min(a_2,b_2)} \dots p_n^{\min(a_n,b_n)}$$

• This formula is valid since the integer on the right (of the equals sign) divides both *a* and *b*. No larger integer can divide both *a* and *b*.

•

Example: $120 = 2^3 \cdot 3 \cdot 5$ $500 = 2^2 \cdot 5^3$ gcd(120,500) = $2^{\min(3,2)} \cdot 3^{\min(1,0)} \cdot 5^{\min(1,3)} = 2^2 \cdot 3^0 \cdot 5^1 = 20$

• Finding the gcd of two positive integers using their prime factorizations is not efficient because there is no efficient algorithm for finding the prime factorization of a positive integer.

Finding the Greatest Common Divisor Using Prime Factorizations

• Suppose the prime factorizations of *a* and *b* are:

$$a = p_1^{a_1} p_2^{a_2} \dots p_n^{a_n}$$
, $b = p_1^{b_1} p_2^{b_2} \dots p_n^{b_n}$,

where each exponent is a nonnegative integer, and where all primes occurring in either prime factorization are included in both. Then:

 $gcd(a,b) = p_1^{\min(a_1,b_1)} p_2^{\min(a_2,b_2)} \dots p_n^{\min(a_n,b_n)}$

• This formula is valid since the integer on the right (of the equals sign) divides both *a* and *b*. No larger integer can divide both *a* and *b*.

Example: $120 = 2^3 \cdot 3 \cdot 5$ $500 = 2^2 \cdot 5^3$ gcd(120,500) =

• Finding the gcd of two positive integers using their prime factorizations is not efficient because there is no efficient algorithm for finding the prime factorization of a positive integer.

Least Common Multiple

Definition: The least common multiple of the positive integers a and b is the smallest positive integer that is divisible by both a and b. It is denoted by lcm(a,b).

• The least common multiple can also be computed from the prime factorizations.

$$\operatorname{lcm}(a,b) = p_1^{\max(a_1,b_1)} p_2^{\max(a_2,b_2)} \cdots p_n^{\max(a_n,b_n)}$$

This number is divided by both a and b and no smaller number is divided by a and b.

Least Common Multiple

Example: lcm(30, 35) =

Least Common Multiple

Example: lcm(30, 35) = 5*2*3, 7*5 5*2*3*7 = 210

Example: $lcm(2^33^57^2, 2^43^3) =$

Example: $lcm(2^{3}3^{5}7^{2}, 2^{4}3^{3}) = 2^{max(3,4)} 3^{max(5,3)} 7^{max(2,0)} = 2^{4} 3^{5} 7^{2}$

LCM and GCD relation

Theorem 5: Let a and b be positive integers. Then $ab = gcd(a,b) \cdot lcm(a,b)$

Example: gcd (20,15) · lcm(20,15)

Proof:

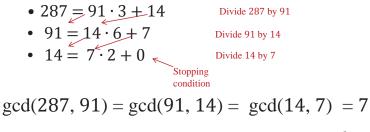
LCM and GCD relation

Theorem 5: Let a and b be positive integers. Then $ab = gcd(a,b) \cdot lcm(a,b)$

Example: $gcd (20,15) \cdot lcm(20,15)$ = $(5^1 \cdot 2^0) \cdot (5^1 3^1 2^2) = (5) \cdot (60)$ = 300 = $20 \cdot 15$

Proof:

Note that min(x,y) + max(x,y) = x + yone uses the larger exponent and the other one the smaller exponent, but you get all factors back.


Euclidean Algorithm

Euclid (325 b.c.e. – 265 b.c.e.)

The Euclidian algorithm is an efficient method for computing the greatest common divisor of two integers. It is based on the idea that gcd(*a*,*b*) is equal to gcd(*a*,*c*) when *a* > *b* and *c* is the remainder when a is divided by *b*.

Example: Find gcd(91, 287):

 $continued \rightarrow$

Correctness of Euclidean Algorithm

Lemma 1: Let a = bq + r, where a, b, q, and r are integers. Then gcd(a,b) = gcd(b,r). **Proof**:

– Suppose that *d* divides both *a* and *b*.

– Suppose that *d* divides both *b* and *r*.

- Therefore, gcd(a,b) = gcd(b,r).

Euclidean Algorithm

• The Euclidean algorithm expressed in pseudocode is:

procedure <i>gcd</i> (<i>a</i> , <i>b</i> : positive integers)
x := a
y := b
while $y \neq 0$
$r := x \mod y$
x := y
y := r
return $x \{ gcd(a,b) \text{ is } x \}$

Correctness of Euclidean Algorithm

Lemma 1: Let a = bq + r, where a, b, q, and r are integers. Then gcd(a,b) = gcd(b,r). **Proof**:

– Suppose that *d* divides both *a* and *b*.

Then *d* also divides a - bq = r (by Theorem 1 of Section 4.1). Hence, any common divisor of *a* and *b* must also be any common divisor of *b* and *r*.

– Suppose that *d* divides both *b* and *r*.

Then *d* also divides bq + r = a. Hence, any common divisor of *a* and *b* must also be a common divisor of *b* and *r*.

- Therefore, gcd(a,b) = gcd(b,r).

Correctness of Euclidean Algorithm

Suppose that a and b are positive $r_0 = r_1q_1 + r_2$ $0 \le r_2 < r_1$,integers with $a \ge b$. $r_1 = r_2q_2 + r_3$ $0 \le r_3 < r_2$,Let $r_0 = a$ and $r_1 = b$. \vdots \vdots Successive applications of the division \vdots

$$\begin{array}{ll} r_{n-2} &= r_{n-1}q_{n-1} + r_2 & 0 \leq r_n < r_{n-1}, \\ r_{n-1} &= r_n q_n \, . \end{array}$$

• Eventually, a remainder of zero occurs in the sequence of terms: $a = r_0 > r_1$ > $r_2 > \cdots \ge 0$. The sequence can't contain more than *a* terms.

gcds as Linear Combinations

Étienne Bézout (1730-1783)

Bézout's Theorem: If *a* and *b* are positive integers, then there exist integers *s* and *t* such that gcd(a,b) = sa + tb. (*proof in exercises of Section* 5.2)

Definition: If *a* and *b* are positive integers, then integers *s* and *t* such that gcd(a,b) = sa + tb are called *Bézout* coefficients of *a* and *b*. The equation gcd(a,b) = sa + tb is called *Bézout's identity*.

- By Bézout's Theorem, the gcd of integers *a* and *b* can be expressed in the form *sa* + *tb* where *s* and *t* are integers. This is a *linear combination* with integer coefficients of *a* and *b*.
 - gcd(6,14) =

Correctness of Euclidean Algorithm

integrand with $a > b$	0	$= r_1 q_1 + r_2$	$0 \le r_2 < r_1,$
Let $r_0 = a$ and $r_1 = b$.	-	$= r_2 q_2 + r_3$	$0 \le r_3 < r_2,$
Successive applications of the division algorithm yields:			
		•	

$$\begin{aligned} r_{n-2} &= r_{n-1}q_{n-1} + r_2 \quad 0 \leq r_n < r_{n-1}, \\ r_{n-1} &= r_n q_n . \end{aligned}$$

- Eventually, a remainder of zero occurs in the sequence of terms: $a = r_0 > r_1$ > $r_2 > \cdots \ge 0$. The sequence can't contain more than *a* terms.
- By Lemma 1

$$gcd(a,b) = gcd(r_0,r_1) = \cdots = gcd(r_{n-1},r_n) = gcd(r_n,0) = r_n.$$

• Hence the greatest common divisor is the last nonzero remainder in the sequence of divisions.

gcds as Linear Combinations


```
Étienne Bézout (1730-1783)
```

Bézout's Theorem: If *a* and *b* are positive integers, then there exist integers *s* and *t* such that gcd(a,b) = sa + tb.

(proof in exercises of Section 5.2)

Definition: If *a* and *b* are positive integers, then integers *s* and *t* such that gcd(a,b) = sa + tb are called *Bézout coefficients* of *a* and *b*. The equation gcd(a,b) = sa + tb is called *Bézout's identity*.

• By Bézout's Theorem, the gcd of integers *a* and *b* can be expressed in the form *sa* + *tb* where *s* and *t* are integers. This is a *linear combination* with integer coefficients of *a* and *b*.

$$\begin{array}{rcl} - \ \gcd(6,14) &= \\ &= 2 \\ &= (-2) \cdot 6 + 1 \cdot 14 \end{array}$$

Finding gcds as Linear Combinations

Example: Express gcd(252,198) = 18 as a linear combination of 252 and 198.

Solution: First use the Euclidean algorithm to show gcd(252,198) = 18

- Now working backwards, from iii and i above
- Substituting the 2nd equation into the 1st yields:
- Substituting 54 = 252 1.198 (from i)) yields:
- This method illustrated above is a two pass method. It first uses the Euclidian algorithm to find the gcd and then works backwards to express the gcd as a linear combination of the original two integers.

Consequences of Bézout's Theorem

Lemma 2: If *a*, *b*, and *c* are positive integers such that gcd(a, b) = 1 and $a \mid bc$, then $a \mid c$.

Proof: Assume gcd(a, b) = 1 and $a \mid bc$

- Since gcd(a, b) = 1, by Bézout's Theorem there are integers *s* and *t* such that

sa + tb = 1.

Lemma 3: If *p* is prime and $p | a_1 a_2 \cdots a_n$, then $p | a_i$ for some *i*. (*proof uses mathematical induction; see Exercise* 64 *of Section* 5.1)

• Lemma 3 is crucial in the proof of the uniqueness of prime factorizations.

Finding gcds as Linear Combinations

Example: Express gcd(252,198) = 18 as a linear combination of 252 and 198.

Solution: First use the Euclidean algorithm to show

- gcd(252,198) = 18
 - i. 252 = 1.198 + 54
 - ii. 198 = 3.54 + 36
 - iii. 54 = 1.36 + 18
 - iv. 36 = 2.18
- Now working backwards, from iii and i above
 - 18 = 54 1.36
 - 36 = 198 3.54
- Substituting the 2^{nd} equation into the 1^{st} yields:
 - $18 = 54 1 \cdot (198 3 \cdot 54) = 4 \cdot 54 1 \cdot 198$
- Substituting 54 = 252 1.198 (from i)) yields:
 - $18 = 4 \cdot (252 1 \cdot 198) 1 \cdot 198 = 4 \cdot 252 5 \cdot 198$
- This method illustrated above is a two pass method. It first uses the Euclidian algorithm to find the gcd and then works backwards to express the gcd as a linear combination of the original two integers.

Consequences of Bézout's Theorem

Lemma 2: If *a*, *b*, and *c* are positive integers such that gcd(a, b) = 1 and $a \mid bc$, then $a \mid c$.

Proof: Assume gcd(a, b) = 1 and $a \mid bc$

- Since gcd(a, b) = 1, by Bézout's Theorem there are integers s and t such that

sa + tb = 1.

- Multiplying both sides of the equation by c, yields sac + tbc = c.
- From Theorem 1 of Section 4.1:
 a | tbc (part ii) and *a* divides sac + tbc since *a | sac* and *a/tbc* (part i)
- We conclude a / c, since sac + tbc = c.

Lemma 3: If *p* is prime and $p | a_1 a_2 \cdots a_n$, then $p | a_i$ for some *i*. (*proof uses mathematical induction; see Exercise* 64 *of Section* 5.1)

• Lemma 3 is crucial in the proof of the uniqueness of prime factorizations.

Uniqueness of Prime Factorization

• We will prove that a prime factorization of a positive integer where the primes are in nondecreasing order is unique. (This is part of the fundamental theorem of arithmetic. The other part, which asserts that every positive integer has a prime factorization into primes, will be proved in Section 5.2.)

Proof: (*by contradiction*) Suppose that the positive integer *n* can be written as a product of primes in two distinct ways:

$$n = p_1 p_2 \cdots p_s$$
 and $n = q_1 q_2 \cdots p_r$.

- Remove all common primes from the factorizations to get

$$p_{i_1}p_{i_2}\cdots p_{i_u}=q_{j_1}q_{j_2}\cdots q_{j_v}$$

- By Lemma 3, it follows that p_{i_1} divides q_{j_k} , for some k, contradicting the assumption that p_{i_1} and q_{j_k} are distinct primes.
- Hence, there can be at most one factorization of *n* into primes in nondecreasing order.

Dividing Congruences by an Integer

- Dividing both sides of a valid congruence by an integer does not always produce a valid congruence (see Section 4.1).
- But dividing by an integer relatively prime to the modulus does produce a valid congruence:
 Theorem 7: Let m be a positive integer and let *a*, *b*, and *c* be integers. If *ac* ≡ *bc* (mod *m*) and gcd(*c*,*m*) = 1, then *a* ≡ *b* (mod *m*).
 Proof:

Dividing Congruences by an Integer

- Dividing both sides of a valid congruence by an integer does not always produce a valid congruence (see Section 4.1).
- But dividing by an integer relatively prime to the modulus does produce a valid congruence:

Theorem 7: Let m be a positive integer and let *a*, *b*, and *c* be integers. If $ac \equiv bc \pmod{m}$ and gcd(c,m) = 1, then $a \equiv b \pmod{m}$.

Proof: Since $ac \equiv bc \pmod{m}$, $m \mid ac - bc = c(a - b)$

by Lemma 2 and the fact that gcd(c,m) = 1, it follows that $m \mid a - b$.

Hence, $a \equiv b \pmod{m}$.

Chap 4.4 - Linear Congruences

Definition: A congruence of the form

 $ax \equiv b \pmod{m},$

where *m* is a positive integer, *a* and *b* are integers, and *x* is a variable, is called a *linear congruence*.

• The solutions to a linear congruence $ax \equiv b \pmod{m}$ are all integers x that satisfy the congruence.

Definition: An integer \bar{a} such that $\bar{a}a \equiv 1 \pmod{m}$ is said to be an *inverse* of *a* modulo *m*. **Example**: What is the inverse of 3 modulo 7?

• One method of solving linear congruences makes use of an inverse \bar{a} , if it exists. Although we can not divide both sides of the congruence by a, we can multiply by \bar{a} to solve for x.

Chap 4.4 - Linear Congruences

Definition: A congruence of the form

 $ax \equiv b \pmod{m},$

where *m* is a positive integer, *a* and *b* are integers, and *x* is a variable, is called a *linear congruence*.

• The solutions to a linear congruence $ax \equiv b \pmod{m}$ are all integers x that satisfy the congruence.

Definition: An integer \bar{a} such that $\bar{a}a \equiv 1 \pmod{m}$ is said to be an *inverse* of *a* modulo *m*.

Example: What is the inverse of 3 modulo 7?

5 is an inverse of 3 modulo 7 since $5 \cdot 3 = 15 \equiv 1 \pmod{7}$

• One method of solving linear congruences makes use of an inverse \bar{a} , if it exists. Although we can not divide both sides of the congruence by a, we can multiply by \bar{a} to solve for x.

Inverse of a modulo m

• The following theorem guarantees that an inverse of *a* modulo *m* exists whenever *a* and *m* are relatively prime. Two integers *a* and *b* are relatively prime when gcd(a,b) = 1.

Theorem 1: If *a* and *m* are relatively prime integers and m > 1, then an inverse of *a* modulo *m* exists. Furthermore, this inverse is unique modulo *m*. (This means that there is a unique positive integer \bar{a} less than *m* that is an inverse of *a* modulo *m* and every other inverse of *a* modulo *m* is congruent to \bar{a} modulo *m*.)

Proof: Since gcd(a,m) = 1, by Theorem 6 of Section 4.3, there are integers *s* and *t* such that sa + tm = 1.

- Hence, $sa + tm \equiv 1 \pmod{m}$.
- Since $tm \equiv 0 \pmod{m}$, it follows that $sa \equiv 1 \pmod{m}$
- Consequently, *s* is an inverse of *a* modulo *m*.
- The uniqueness of the inverse is Exercise 7.

Inverse of a modulo m

- The following theorem guarantees that an inverse of *a* modulo *m* exists whenever *a* and *m* are relatively prime. Two integers *a* and *b* are relatively prime when gcd(a,b) = 1.
- **Theorem 1**: If *a* and *m* are relatively prime integers and m > 1, then an inverse of *a* modulo *m* exists. Furthermore, this inverse is unique modulo *m*. (This means that there is a unique positive integer \bar{a} less than *m* that is an inverse of *a* modulo *m* and every other inverse of *a* modulo *m* is congruent to \bar{a} modulo *m*.)

Proof: Since gcd(a,m) = 1, by Theorem 6 of Section 4.3, there are integers *s* and *t* such that sa + tm = 1.

Finding Inverses

• The Euclidean algorithm and Bézout coefficients gives us a systematic approaches to finding inverses.

Example: Find an inverse of 3 modulo 7.

Solution: Because gcd(3,7) = 1, by Theorem 1, an inverse of 3 modulo 7 exists.

- Using the Euclidian algorithm to find gcd: $7 = 2 \cdot 3 + 1$.
- From this equation, we get $-2 \cdot 3 + 1 \cdot 7 = 1$, and see that -2 and 1 are Bézout coefficients of 3 and 7.
- Hence, -2 is an inverse of 3 modulo 7.
- Also every integer congruent to -2 modulo 7 is an inverse of 3 modulo 7, i.e., 5, -9, 12, etc.

Finding Inverses

Example: Find an inverse of 101 modulo 4620. **Solution**: First use the Euclidian algorithm to show that

gcd(101,4620) = 1.

Working Backwards:

Finding Inverses

Example: Find an inverse of 101 modulo 4620.

Solution: First use the Euclidian algorithm to show that gcd(101,4620) = 1.

Working Backwards:

Since the last nonzero remainder is 1, gcd(101,4620) = 1

Bézout coefficients : - 35 and 1601 1601 is an inverse of 101 modulo 4620