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Announcements

• Prof. Rodger office hours this week
– Only Tuesday 1-1:30pm

• Read for next time Chap. 5.1
• Exam 1 back today
• No Recitation this week

Chap 4.4 - Linear Congruences
   Definition: A congruence of the form                          
                        ax b( mod m),
    where m is a positive integer, a and b are integers, and x is a variable, is 

called a linear congruence.

• The solutions to a linear congruence ax b( mod m) are  all integers x
that satisfy the congruence.

   Definition: An integer such that 1( mod m) is said to be an 
inverse of a modulo m.

   Example:  What is the inverse of 3 modulo 7?
           5 is an inverse of 3 modulo 7 since 5 3 = 15 1(mod 7)

• One method of solving linear congruences makes use of  an inverse ,
if it exists. Although we can not divide both sides of the congruence by 
a, we can multiply by to solve for x.
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Inverse of a modulo m
• The following theorem guarantees that an inverse of a modulo 

m exists whenever a and m are relatively prime.  Two integers a
and b are relatively prime when gcd(a,b) = 1.

   Theorem 11: If a and m are relatively prime integers and m > 1,
then an inverse of a modulo m exists. Furthermore, this inverse 
is unique modulo m. (This means that there is a unique positive 
integer less than m that is an inverse of a modulo m and every 
other inverse of a modulo m is congruent to modulo m.)   

    Proof:  Since gcd(a,m) = 1, by Theorem 6 of Section 4.3, there 
are integers  s and t such that   sa + tm = 1.
– Hence, sa + tm  1 ( mod m).
– Since tm  0 ( mod m), it follows that sa  1 ( mod m)
– Consequently, s is an inverse of a modulo m.
– The uniqueness of the inverse is Exercise 7.
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Finding Inverses
• The Euclidean algorithm and Bézout coefficients gives us 

a systematic approaches to finding inverses. 
Example: Find an inverse of 3 modulo 7.
Solution: Because gcd(3,7) = 1, by Theorem 1, an inverse 
of 3 modulo 7 exists. 
– Using the Euclidian algorithm to find gcd: 7 = 2 3 + 1. 
–  From this equation, we get  2 3 + 1 7 = 1, and see that 

2  and 1 are Bézout coefficients of 3 and 7. 
–  Hence,  2 is an inverse of 3 modulo 7.  
– Also every integer congruent to 2 modulo 7 is an 

inverse of 3 modulo 7, i.e., 5, 9, 12, etc. 

Finding Inverses
Example: Find an inverse of 101 modulo 4620.
Solution: First use the Euclidian algorithm to show that  
gcd(101,4620) = 1.

 
 42620 = 45 101 + 75 

101 = 1 75 + 26 
75 = 2 26 + 23 
26 = 1 23 + 3 
23 = 7 3 + 2 
3 = 1 2 + 1 
2 = 2 1 

Since the last nonzero 
remainder is 1,
gcd(101,4260) = 1 

1 = 3  1 2 
1 = 3  1 (23 7 3) =  1 23 + 8 3 
1 = 1 23 + 8 (26 1 23) = 8 26  9 23 
1 = 8 26  9 (75 2 26 )= 26 26  9 75 
1 = 26 (101 1 75)  9 75  
           = 26 101  35 75 
1 = 26 101  35 (42620 45 101)  
       =  35 42620 + 1601 101 

Working Backwards:
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Bézout coefficients :  
 35 and 1601

1601 is an inverse 
of 101 modulo 
4620

Using Inverses to Solve Congruences
• We can solve the congruence   ax b( mod m) by multiplying both sides by 
     
    Example:  What are the solutions of the  congruence 3x 4( mod 7). 
     Solution:  We found that 2 is an inverse of 3 modulo 7 (two slides back). 

We multiply both sides of the congruence by 2 giving  
                2   3x 2 4(mod 7).
     Because  6 1 (mod 7)  and 8 6 (mod 7), it follows that if x is a 

solution, then x  8  6 (mod 7)
     We need to determine if every x with x  6 (mod 7) is a solution. Assume that    

x  6 (mod 7). By Theorem 5 of Section 4.1, it follows that 3x 3  6 = 18
4( mod 7) which shows that all such x satisfy the congruence. 

     The solutions are the integers x such that x  6 (mod 7), namely,  6,13,20 …
and   1, 8, 15,…
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The Chinese Remainder Theorem
• In the first century, the Chinese mathematician Sun-Tsu asked:

   There are certain things whose number is unknown. When divided 
by 3, the remainder is 2; when divided by 5, the remainder is 3; 
when divided by 7, the remainder is 2. What will be the number of 
things?

• This puzzle can be translated into the  solution of the system of 
congruences:
x 2 ( mod 3),
x 3 ( mod 5),
x 2 ( mod 7)?

• We’ll see how the theorem that is known as the Chinese 
Remainder Theorem can be used to solve Sun-Tsu’s problem.



The Chinese Remainder Theorem
Theorem 22: (The Chinese Remainder Theorem) Let m1,m2,…,mn be pairwise

relatively prime positive integers greater than one and a1,a2,…,an arbitrary 
integers. Then the system

x a1 ( mod m1)
x a2 ( mod m2)
     
      
     
x an ( mod mn)

has a unique solution  modulo m = m1m2 mn.
(That is, there is a solution x with  0 x <m and all other solutions are 

congruent modulo m to this solution.)
   

• Proof: We’ll  show that a solution exists by describing a way to construct the 
solution. Showing that the solution is unique modulo m is Exercise 30.

continued 

The Chinese Remainder Theorem
   To construct a solution first let Mk=m/mk     for k = 1,2,…,n and m = m1m2 mn.

     Since  gcd(mk ,Mk ) = 1, by Theorem 1,  there is an integer  yk , an inverse of Mk
modulo mk, such that

                         Mk yk 1 ( mod mk ).
      Form the sum
                     x = a1 M1 y1   + a2 M2 y2   + + an Mn yn . 
 
       Note that because Mj 0 ( mod mk)   whenever j k , all terms except the kth

term in this sum are congruent to 0 modulo mk .
      Because  Mk yk 1 ( mod mk ), we see that    x ak Mk yk ak( mod mk), for k =

1,2,…,n.
      Hence, x is a simultaneous solution to the n congruences.

     x a1 ( mod m1)
     x a2 ( mod m2)
        
         
        

x an ( mod mn)

The Chinese Remainder Theorem
   Example: Consider the 3 congruences from Sun-Tsu’s problem: 
      x 2 ( mod 3),  x 3 ( mod 5), x 2 ( mod 7).

– Let m = 3  5  7  = 105, M1   = m/3 = 35, M3   = m/5 = 21,                     
M3   = m/7 = 15. 

– We see that 
2 is an inverse of M1   = 35 modulo 3 since 35  2 2  2 1 (mod 3)
1 is an inverse of M2   = 21 modulo 5 since 21 1 (mod 5) 
1 is an inverse of M3   = 15 modulo 7 since 15 1 (mod 7)

– Hence,  
         x = a1M1y1  + a2M2y2  + a3M3y3  
           = 2 35  2 + 3 21  1  + 2 15  1  = 233  

– We have shown that 23 is the smallest positive integer that is a 
simultaneous solution. Check it! 
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Back Substitution
• We can also solve systems of linear congruences with pairwise relatively prime 

moduli by rewriting a  congruences as  an equality using Theorem 4 in Section 4.1, 
substituting the value for the variable into another congruence, and continuing the 
process until we have worked through all the congruences. This method is known as 
back substitution.
Example: Use the method of back substitution to find all integers x such that x 
(mod 5), x 6), and x 7). 

       Solution: By Theorem 4 in Section 4.1, the first congruence can be rewritten as x 
= 5t +1, where t is an integer.  

– Substituting into the second congruence yields  5t 6).  
– Solving this tells us that  t 6).  
– Using Theorem 4 again gives t = 6u + 5 where u is an integer.  
– Substituting this back into x = 5t +1,  gives x = 5(6u + 5) +1 = 30u + 26. 
– Inserting this into the third equation gives 30u 7). 
– Solving this congruence tells us that u 7). 
– By Theorem 4, u = 7v + 6, where v is an integer. 
– Substituting this expression for u into x  =  30u + 26, tells us that x  =  

30(7v + 6) + 26 = 210u + 206. 
      Translating this back into a congruence we find the solution x 210). 

Fermat’s Little Theorem

Theorem 33: (Fermat’s Little Theorem) If p is prime and a is an integer not divisible 
by p, then ap-1 p) 

     Furthermore, for every integer a we have  ap a (mod p) 
     (proof  outlined in Exercise 19)

Fermat’s little theorem is useful in computing the remainders modulo p of large 
powers of integers.

Example: Find 7222 mod 11. 
      By Fermat’s little theorem, we know that 710 710 )k 

(mod 11), for every positive integer k. Therefore, 
 
                7222 = 722 = (710)2272  (1)22  
 
     Hence, 7222 mod 11 = 5. 
      

Pierre de Fermat
(1601-1665)
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Pseudoprimes
• By Fermat’s little theorem n > 2 is prime, where
                     2n-1 1 (mod n).
• But if this congruence holds, n may not be prime. Composite 

integers n such that 2n-1 1 (mod n) are called pseudoprimes to 
the base 2.

    Example: The integer 341 is a pseudoprime to the base 2.
341 = 11  
2340 1 (mod 341) (see in Exercise 37)

• We can replace 2 by any integer b .

    Definition: Let b be a positive integer. If n is a composite 
integer, and bn-1 1 (mod n), then n is called a pseudoprime to 
the base b.
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Pseudoprimes
• Given a positive integer n, such that  2n-1 1 (mod n):

– If n does not satisfy the congruence, it is composite.
– If n does satisfy the congruence, it is either prime or a 

pseudoprime to the base 2.
• Doing similar tests with additional bases b, provides 

more evidence as to whether n is prime.
• Among the positive integers not exceeding a positive 

real number x, compared to primes, there are relatively 
few pseudoprimes to the base b.
– For example, among the positive integers less than 1010

there are 455,052,512 primes, but only 14,884
pseudoprimes to the base 2.

Primitive Roots
   Definition: A primitive root modulo a prime p is an   

integer r in Zp such that every nonzero element of 
Zp is a power of r.

   Example:  Since every element of Z11 is a power of 
2, 2 is a primitive root of 11.

    Powers of 2 modulo 11: 21 = 2, 22 = 4, 23 = 8, 24 = 5, 25 = 
10, 26 = 9, 27 = 7, 28 = 3, 210 = 2. 

 
   Example:  Since not all elements of Z11 are powers 

of 3, 3 is not a primitive root of 11.
     Powers of 3 modulo 11: 31 = 3, 32 = 9, 33 = 5, 34 = 4, 35 = 

1, and the pattern repeats for higher powers.

    Important Fact: There is a primitive root modulo p
for every prime number p.
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Discrete Logarithms
    Suppose p is prime and r is a primitive root modulo p. If a is an 

integer between  1 and p Zp, there is 
a unique exponent e  such that    re = a in Zp, that is, re mod p 
= a.

   Definition: Suppose that p is prime, r is a primitive root modulo 
p, and a is an integer between 1 and p re mod p 
= a and             1 e p 1, we say that e is the discrete 
logarithm of a modulo p to the base r and we write logr a = e 
(where the prime p is understood).

     Example 1: We write log2 3 = 8  since the discrete logarithm 
of 3 modulo 11 to the base 2 is 8 as 28 = 3 modulo 11.  

 
    Example 2: We write log2 5 = 4  since the discrete logarithm 

of 5 modulo 11 to the base 2 is 4 as 24 = 5 modulo 11. 
    There is no known polynomial time algorithm for computing the 

discrete logarithm of a modulo p to the base r (when given the prime p,
a root r modulo p, and a positive integer a Zp). The problem plays 
a role in cryptography as will be discussed in Section 4.6.

Chap 4.5 - Hashing Functions
     Definition: A hashing function h assigns memory 

location h(k) to the record that has k as its key.
– A common hashing function is  h(k) = k mod m, where 

m is the number of memory locations. 
– Because this hashing function is onto, all memory 

locations are possible.

     Example: Let h(k) = k mod 111. This hashing 
function assigns the records of customers with 
social security numbers as keys to memory locations 
in the following manner:

h(064212848) = 064212848 mod 111 = 14 
h(037149212) = 037149212 mod 111 = 65 
h(107405723) = 107405723 mod 111 = 14, but since 

location 14 is already occupied, the record is assigned to  
the next available position, which is 15. 

 

More on Hashing Functions
• The hashing function is not one-to-one as there 

are many more possible keys than memory 
locations.  When more than one record is 
assigned to the same location, we say a 
collision occurs.  Here a collision has been 
resolved by assigning the record to the first 
free location.

• For collision resolution, we can use a  linear 
probing function:                                         

h(k,i) = (h(k) + i) mod m, where i
runs from 0 to m  
 There are many other methods of handling 
with collisions.  
 

Pseudorandom Numbers
• Randomly chosen numbers are needed for many purposes, 

including computer simulations. 
• Pseudorandom numbers are not truly random since they are 

generated by systematic methods. 
• The linear congruential method is one commonly used 

procedure for generating pseudorandom numbers. 
• Four integers are needed: the modulus m, the multiplier a, the 

increment c, and seed x0, with     2 a < m, 0 c < m, 0 x0 
< m. 

• We generate a sequence of pseudorandom numbers {xn}, with                
0 xn < m for all n, by successively using the recursively 
defined function

                               
   (an example of a recursive definition, discussed in Section 5.3)
• If pseudorandom numbers between 0 and 1 are needed, then the 

generated numbers are divided by the modulus, xn /m.

xn+1   = (axn + c) mod m.



Pseudorandom Numbers
• Example: Find the sequence of pseudorandom numbers generated by 

the linear congruential method with modulus m = 9, multiplier a = 7,
increment c = 4, and          seed x0  = 3.

• Solution: Compute the terms of the sequence by successively using the 
congruence      xn+1   = (7xn + 4) mod 9, with x0  = 3.

x1  = 7x0 + 4 mod 9 = 7 mod 9 = 25 mod 9 = 7,
x2  = 7x1 + 4 mod 9 = 7 mod 9 = 53 mod 9 = 8,
x3  = 7x2 + 4 mod 9 = 7 mod 9 = 60 mod 9 = 6,
x4  = 7x3 + 4 mod 9 = 7 mod 9 = 46 mod 9 = 1,
x5  = 7x4 + 4 mod 9 = 7 mod 9 = 11 mod 9 = 2,
x6  = 7x5 + 4 mod 9 = 7 mod 9 = 18 mod 9 = 0,
x7  = 7x6 + 4 mod 9 = 7 mod 9 = 4 mod 9 = 4,
x8  = 7x7 + 4 mod 9 = 7 mod 9 = 32 mod 9 = 5,
x9  = 7x8 + 4 mod 9 = 7 mod 9 = 39 mod 9 = 3.

The sequence generated is 3,7,8,6,1,2,0,4,5,3,7,8,6,1,2,0,4,5,3,…    
It repeats after generating 9 terms.

• Commonly, computers use a linear congruential generator with 
increment c = 0. This is called a pure multiplicative generator. Such a 
generator with modulus 231 and multiplier  75 = 16,807 
generates 231 numbers before  repeating.  

Check Digits:  UPCs
• A common method of detecting errors in strings of digits is to 

add an extra digit at the end, which is evaluated using a 
function. If the final digit is  not correct, then the string is 
assumed not to be correct.

   Example: Retail products are identified by their Universal 
Product Codes (UPCs). Usually these have 12 decimal digits, 
the last one being the check digit. The check digit is determined 
by the congruence:

   3x1  + x2  + 3x3  + x4  + 3x5  + x6  + 3x7  + x8  + 3x9 + x10  + 3x11  + x12  (mod 10). 
a. Suppose that the first 11 digits of the UPC are 79357343104. What is the check digit? 
b. Is 041331021641 a valid UPC? 

        Solution:  
a. 3 3 3  3  3 3 x12  (mod 10)  
           21 + 9 + 9 + 5 + 21 + 3 + 12+ 3 + 3 + 0 + 12 + x12  (mod 10)                 
           98 + x12  (mod 10)  
           x12  (mod 10)     So, the check digit is 2. 
b. 3 3 3  3  3 3 1  (mod 10)  
           0 + 4 + 3 + 3 + 9 + 1 + 0+ 2 + 3 + 6 + 12 + 1 = 44   (mod 10)                 
          Hence, 041331021641  is not a valid UPC. 
 
 

Check Digits:ISBNs
         Books are identified  by an International Standard Book Number (ISBN-10), a 10 digit code. The 

first 9 digits identify the language, the publisher, and the book. The tenth digit is a check digit, which 
is determined by the following congruence 

                                                     

       The validity of an ISBN-10 number can be evaluated with the equivalent 

a. Suppose that the first 9 digits of the ISBN-10 are 007288008. What is the check 
digit?      

b. Is 084930149X  a valid ISBN10? 
 

        Solution:
a.         X10  1  2 3 4  5  6 7 8 9  (mod 11). 

                X10   0 + 21 +  8 +  40 +  48 +  0 + 0 + 72 (mod 11).  
X10    (mod 11).  Hence, X10  = 2. 

   b.           2 3 4  5  6 7 8 9  10  = 
                          0 + 16 + 12 +  36 +  15 +  0 + 7 + 32 + 81 + 100  = 299   0 (mod 11)  
                 Hence, 084930149X  is not a valid ISBN-10. 
 

• A single error is an error in one digit of an identification number and  a transposition error is the  
accidental interchanging of two digits.  Both of these kinds of errors can be detected by the check 
digit for  ISBN-10. (see text for more details) 

                          

X is used 
for the digit 
10.

Chap. 4.6 - Caesar Cipher

Julius Caesar created secret messages by shifting each letter three letters 
forward in the alphabet (sending the last three letters to the first three letters.) 
For example, the letter B is replaced by E and the letter X is replaced by A. 
This process of making a message secret is an example of encryption.
Here is how the encryption process works:

– Replace each letter by an integer from Z26, that is an integer from 0 to 25 representing 
one less than its position in the alphabet.

– The encryption function is f(p) = (p + 3) mod 26. It replaces each integer p in the set 
{0,1,2,…,25} by f(p) in the set {0,1,2,…,25} .

– Replace each integer p by the letter with the position p + 1 in the alphabet.
Example: Encrypt the message “MEET YOU IN THE PARK” using the Caesar 
cipher.

Solution: 12 4 4 19    24 14 20    8 13    19 7 4    15 0 17 10.
Now replace each of these numbers p by f(p) = (p + 3) mod 26.

15 7 7 22    1 17 23    11 16    22 10 7    18 3 20 13.
Translating the numbers back to letters produces the encrypted message

“PHHW  BRX LQ  WKH  SDUN.”



Caesar Cipher
• To recover the original message, use f 1(p) = (p mmod 26. So, 

each letter in the coded message is shifted back three letters 
in the alphabet, with the first three letters sent to the last 
three letters. This process of recovering the original 
message from the encrypted message is called decryption.

• The Caesar cipher is one of a family of ciphers called shift 
ciphers. Letters can be shifted by an integer k, with 3 being just 
one possibility. The encryption function is
       f(p) = (p + k) mod 26 
and the decryption function is
       f 1(p) = (p k) mmod 26 

      The integer k is called a key.

Shift Cipher
Example 11: Encrypt the message “STOP GLOBAL 
WARMING” using the shift cipher with k = 11.

    Solution: Replace each letter with the corresponding 
element of Z26.

        18 19 14 15    6 11 14 1 0 11     22 0 17 12  8  13  6.
    Apply the shift  f(p) = (p + 11) mod 26, yielding
       3 4 25 0    17 22 25 12 11 22     7 11 2 23  19  24  17.           
    Translating the numbers back to letters produces the 

ciphertext
           “DEZA RWZMLW HLCXTYR.”

Shift Cipher
Example 11: Encrypt the message “STOP GLOBAL 
WARMING” using the shift cipher with k = 11.

    Solution: Replace each letter with the corresponding 
element of Z26.

        18 19 14 15    6 11 14 1 0 11     22 0 17 12  8  13  6.
    Apply the shift  f(p) = (p + 11) mod 26, yielding
       3 4 25 0    17 22 25 12 11 22     7 11 2 23  19  24  17.           
    Translating the numbers back to letters produces the 

ciphertext
           “DEZA RWZMLW HLCXTYR.”

Shift Cipher
Example 22: Decrypt the message “LEWLYPLUJL PZ H 
NYLHA  ALHJOLY” that was encrypted using the shift 
cipher with k = 7.

    Solution: Replace each letter with the corresponding 
element of Z26.

    11 4 22 11 24 15 11 20 9 11   15 25   7   13 24 11 7  0    0 11 7  9  14  11  24.

    Shift each of the numbers by k = ,
yielding

    4 23 15 4 17 8 4 13 2 4   8 18    0    6 17 4  0  19     19  4  0  2  7  4  17.

    Translating the numbers back to letters produces the 
decrypted message

           “EXPERIENCE IS A GREAT TEACHER.”



Shift Cipher
Example 22: Decrypt the message “LEWLYPLUJL PZ H 
NYLHA  ALHJOLY” that was encrypted using the shift 
cipher with k = 7.

    Solution: Replace each letter with the corresponding 
element of Z26.

    11 4 22 11 24 15 11 20 9 11   15 25   7   13 24 11 7  0    0 11 7  9  14  11  24.

    Shift each of the numbers by k = ,
yielding

    4 23 15 4 17 8 4 13 2 4   8 18    0    6 17 4  0  19     19  4  0  2  7  4  17.

    Translating the numbers back to letters produces the 
decrypted message

           “EXPERIENCE IS A GREAT TEACHER.”

Affine Ciphers
• Shift ciphers are a special case of affine ciphers which use 

functions of the form
f(p) = (ap + b) mod 26, 

     where a and b are integers, chosen so that f is a bijection. 
     The function is a bijection if and only if gcd(a,26) = 1.  
• Example: What letter replaces the letter K when the  function 

f(p) = (7p + 3) mod 26 is used for encryption.
     Solution: Since 10 represents K, f(10) = (7 10 + 3) mod 26 

=21, which is then replaced by V.

• To decrypt a message encrypted by a shift cipher, the 
congruence  c ap + b (mod 26) needs to be solved for p.
– Subtract b from both sides to obtain c ap (mod 26).
– Multiply both sides by  the inverse of a modulo 26, which exists 

since gcd(a,26) = 1.
– (c ) ap (mod 26), which simplifies to (c ) p (mod 

26).
– p (c ) (mod 26) is used to determine p in Z26. 
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Cryptanalysis of Affine Ciphers
• The process of recovering plaintext from ciphertext without knowledge 

both  of the encryption method and the key is known as cryptanalysis
or breaking codes.

• An important tool for cryptanalyzing ciphertext produced with a affine 
ciphers is the relative frequencies of letters. The nine most common 
letters in the English texts are E 13%, T 9%, A 8%, O 8%, I 7%, N 
7%, S 7%, H 6%, and R 6%.

• To analyze ciphertext:
– Find the frequency of the letters in the ciphertext.
– Hypothesize that the most frequent letter is produced by encrypting E. 
– If the value of the shift from E to the most frequent letter is k, shift the 

ciphertext by k and see if it makes sense.
– If not, try T as a hypothesis and continue. 

• Example: We intercepted the message “ZNK KGXRE HOXJ MKZY 
ZNK CUXS” that we know was produced by a shift cipher.  Let’s try 
to cryptanalyze.

• Solution: The most common letter in the ciphertext is K. So perhaps 
the letters were shifted by 6 since this would then map E to K. Shifting 
the entire message by 
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Block Ciphers
• Ciphers that replace each letter of the alphabet by 

another letter are called character or monoalphabetic
ciphers. 

• They are vulnerable to cryptanalysis based on letter 
frequency. Block ciphers avoid this problem, by 
replacing blocks of letters with other blocks of letters.

• A simple type of block cipher is called the transposition 
cipher. The key is a permutation  of the set {1,2,…,m}, 
where m is an integer, that is a one-to-one function 
from {1,2,…,m} to itself.  
To encrypt a message, split the letters into blocks of 
size m, adding additional letters to fill out the final 
block. We encrypt  p1,p2,…,pm as c1,c2,…,cm =
p (1),p (2),…,p (m).

• To decrypt the  c1,c2,…,cm transpose the letters using 
the inverse permutation  .

Block Ciphers

    Example:  Using the transposition cipher based on the 
permutation  of the set {1,2,3,4} with (1) = 3, (2) = 1, 

(3) = 4, (4) = 2, 
a.  
b. ciphertext 

encryted using the same cipher.  
     Solution: 

a.   
              Apply the permutation  

b. :   (1) = 2,  (2) = 4,  (3) = 1,   (4) = 3. 
        Apply the permutation  
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Cryptosystems
   Definition: A cryptosystem is a five-tuple (P,C,K,E,D), where

– P is the set of plainntext strings,
– C is the set of ciphertext strings,
– K is the keyspace (set of all possible keys),
– E is the set of encription functions, and
– D is the set of decryption functions.

• The encryption function in E corresponding to the key k is 
denoted by Ek and the decription function in D that decrypts 
cipher text enrypted using Ek is denoted by Dk. Therefore:

                                Dk(Ek(p)) = p, for all plaintext strings p.

Cryptosystems

    Example: Describe the family of shift ciphers as a 
cryptosystem.

    Solution: Assume the messages are strings 
consisting of  elements in Z26.
– P is the set of strings of elements in  Z26,
– C is the set of  strings of elements in  Z26,
– K = Z26,
– E consists of functions of the form                                          

Ek (p) = (p + k) mod 26 , and
– D is the same as E where Dk (p) = (p k) mod 26 .
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Public Key Cryptography

• All classical ciphers, including shift and affine ciphers, 
are private key cryptosystems. Knowing the encryption 
key allows one to quickly determine the decryption key. 

• All parties who wish to communicate using a private 
key cryptosystem must share the key and keep it a 
secret. 

• In public key cryptosystems, first invented in the 1970s,
knowing how to encrypt a message does not help one to 
decrypt the message. Therefore, everyone can have a 
publicly known encryption key. The only key that needs 
to be kept secret is the decryption key.



The RSA Cryptosystem

• A public key cryptosystem, now known  as the RSA system was 
introduced in 1976 by three researchers at MIT.

• It is now known that the method was discovered earlier by 
Clifford Cocks, working secretly for the UK government. 

• The public encryption key  is (n,e), where  n = pq (the modulus) 
is the product of two large (200 digits) primes p and q, and an 
exponent e that is relatively prime to (p q
large primes can be quickly found using probabilistic 
primality tests, discussed earlier. But n = pq,  with 
approximately 400 digits, cannot be factored in a reasonable 
length of time.

Ronald Rivest
(Born 1948)

Adi Shamir
(Born 1952)

Leonard 
Adelman
(Born 1945)

Clifford Cocks
(Born 1950)

RSA Encryption
• To encrypt a message using RSA using a key (n,e) :

i. Translate the plaintext message M into sequences of 
two digit integers representing the letters.  Use 00 for 
A, 01 for B, etc.

ii. Concatenate the two digit integers into strings of 
digits. 

iii. Divide this string into equally sized blocks of 2N
digits where 2N is the largest even number 2525…25
with 2N digits that does not exceed n.

iv. The plaintext message M is now a sequence of  
integers m1,m2,…,mk.

v. Each block  (an integer) is encrypted using the 
function C = Me mmod n.

     

RSA Encryption Example

     Example: Encrypt the message STOP using the 
RSA cryptosystem with key(2537,13). 
– 2537 = 43  59,
– p = 43 and q = 59 are primes and gcd(e,(p q

= gcd(13, 42  58) = 1.  
       SSolution: Translate the letters in STOP to their 

numerical equivalents 18 19  14 15. 
–

2537 < 252525) to obtain 1819 1415. 
– Encrypt each block using the mapping C = M13 mmod 

2537. 
– Since 181913 mod 2537 = 2081 and 141513 mod 

2537 = 2182, the encrypted message is 2081 2182.
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RSA Decryption
• To decrypt a RSA ciphertext message, the decryption 

key d, an inverse of e modulo (p q
The inverse exists since gcd(e,(p q
gcd(13, 42  58) = 1. 
With the decryption key d, we can decrypt each block  
with the computation      M = Cd mmod . (see text for 
full derivation)

• RSA works as a public key system since the only known 
method of finding d is based on a factorization of n into 
primes. There is currently no known feasible method for 
factoring large numbers into primes.

     

RSA Decryption
• Example: The message  0981 0461 is received. 

What is the decrypted message if it was encrypted 
using the RSA cipher from the previous example. 

       SSolution: The message was encrypted with n = 
43  59 and exponent 13. An inverse of   13 
modulo 42  58 = 2436 (exercise 2 in Section 4.4) 
is d = 937. 
– To decrypt a block C, M = C937 mmod 2537. 
– Since 0981937 mmod 2537 = 0704 and 0461937 mmod 

2537 = 1115, the decrypted message is 0704 1115. 
–   Translating back to English letters, the message is 

RSA Decryption
• Example: The message  0981 0461 is received. 

What is the decrypted message if it was encrypted 
using the RSA cipher from the previous example. 

       SSolution: The message was encrypted with n = 
43  59 and exponent 13. An inverse of   13 
modulo 42  58 = 2436 (exercise 2 in Section 4.4) 
is d = 937. 
– To decrypt a block C, M = C937 mmod 2537. 
– Since 0981937 mmod 2537 = 0704 and 0461937 mmod 

2537 = 1115, the decrypted message is 0704 1115. 
–   Translating back to English letters, the message is 

Cryptographic Protocols: Key Exchange
• Cryptographic protocols are exchanges of messages carried out by two 

or more parties to achieve a particular security goal.
• Key exchange is a protocol by which two parties can exchange a secret 

key over an insecure channel without having any past shared secret 
information. Here the             Diffe-Hellman key agreement protcol is
described by example.
i. Suppose that Alice and Bob want to share a common key.
ii. Alice and Bob agree to use a prime p and a primitive root a of p.
iii. Alice chooses a secret integer k1 and sends ak1 mod p to Bob.
iv. Bob chooses a secret integer k2 and sends ak2 mod p to Alice.
v. Alice computes (ak2)k1 mod p.
vi. Bob computes (ak1)k2 mod p.

At the end of the protocol, Alice and Bob have their shared key
(ak2)k1 mod p = (ak1)k2 mod p.

• To find the secret information from the public information would 
require the adversary to  find k1 and k2 from ak1 mod p and ak2 mod p
respectively. This is an instance of the discrete logarithm problem, 
considered to be computationally infeasible when p and a are 
sufficiently large.



Cryptographic Protocols: Digital 
Signatures

   Adding a digital signature to a message is a way of ensuring the 
recipient that the message came from the purported sender.

• Suppose that Alice’s RSA public key is (n,e) and her private key is d.
Alice encrypts a plain text message x using E(n,e) (x)= xd mod n. She 
decrypts a ciphertext message  y using D(n,e) (y)= yd mod n.

• Alice wants to send a message M so that everyone who receives the 
message knows that it came from her.
1. She translates the message to numerical equivalents  and splits into 

blocks, just as in RSA encryption.
2. She then applies her decryption function D(n,e) to the blocks  and sends 

the results to all intended recipients.
3. The recipients apply Alice’s encryption function and the result is the 

original plain text since E(n,e) (D(n,e) (x))= x.
    Everyone who receives the message can then be certain that it came 

from Alice.

Cryptographic Protocols: Digital 
Signatures

     Example: Suppose Alice’s RSA cryptosystem is the same as in the 
earlier example with  key(2537,13), 2537 = 43  59, p = 43 and q = 59
are primes and      gcd(e,(p q gcd(13, 42  58) = 1.  

      Her decryption key is d = 937.
      She wants to send the message “MEET AT NOON” to her friends so 

that they can be certain that the message is from her.

     Solution: Alice translates the message into blocks of digits 1204 0419 
0019 1314 1413.
1. She then applies her decryption transformation D(2537,13) (x)= x937 mod

2537 to each block. 
2. She finds (using her laptop, programming skills, and knowledge of discrete 

mathematics) that 1204937 mod 2537 = 817, 419937 mod 2537 = 555 ,  
19937 mod 2537 = 1310, 1314937 mod 2537 = 2173, and 1413937 mod
2537 = 1026. 

3. She sends  0817 0555 1310 2173 1026.
    When one of her friends receive the message, they apply Alice’s 

encryption transformation E(2537,13) to each block. They then obtain the 
original message which they translate back to English letters.


