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Announcements
• Read for next time Chap. 6.1-6.2
• Recitation on Friday
• Homework 5 out

Strong Induction
• Strong Induction: To prove that P(n) is true 

for all positive integers n, where P(n) is a 
propositional function, complete two steps:
– Basis Step: Verify that the proposition P(1) is 

true.
– Inductive Step: Show the conditional statement           

[P(1) P(2) P(k)] P(k + 1) holds for 
all positive integers k. 

Strong Induction is sometimes called the 
second principle of mathematical induction 
or complete induction.

Strong Induction and the Infinite Ladder
Strong induction tells us that we can reach all rungs if:
1. We can reach the first rung of the ladder.
2. For every integer k, if we can reach the first k rungs, 

then we can reach the (k + 1)st rung. 

To conclude that we can reach every rung by strong 
induction:
• BASIS STEP:  P(1) holds
• INDUCTIVE STEP:  Assume P(1) P(2)
P(k)

holds for an arbitrary integer k, and show that   
    P(k + 1) must also hold.
We  will have then shown by strong induction that for 
every positive integer n, P(n) holds, i.e., we can 
reach the nth rung of the ladder.



Proof using Strong Induction
   Example: Suppose we can reach the first and second 

rungs of an infinite ladder, and we know that if we 
can reach a rung, then we can reach two rungs 
higher. Prove that we can reach every rung.

   (Try this with mathematical induction.)
    Solution: Prove the result using strong induction.

– BASIS STEP: We can reach the first step.
– INDUCTIVE STEP:  The inductive hypothesis is that 

we can reach the first k rungs, for any k 2. 
–  We can reach the  (k + 1)st rung since we can reach 

the (k 1)st rung by the inductive hypothesis. 
– Hence, we can reach all rungs of the ladder. 

Which Form of Induction Should Be 
Used?

• Can always use strong induction instead of  
mathematical induction. 

• (if it is simpler use mathematical induction). 
• The principles of mathematical induction, 

strong induction, and the well-ordering 
property are all equivalent. (Exercises 41-43)

• Sometimes it is clear how to proceed using one 
of the three methods, but not the other two. 

Completion of the proof of the Fundamental Theorem of Arithmetic
   Example: Show that if n is an integer greater than 1,

then n can be written as the product of primes.

   Solution: Let P(n) be the proposition that n can be written as 
a product of primes.
– BASIS STEP: P(2) is true since 2 itself is prime.
– INDUCTIVE STEP: The inductive hypothesis is P(j) is 

true for all integers j with 2 j  k.
– To show that P(k + 1) must be true under this 

assumption, two cases need to be considered:
• If k + 1  is prime, then P(k + 1) is true.
• Otherwise, k + 1  is composite and can be written 

as the product of two positive integers a and b
with 2 a b < k + 1. By the inductive 
hypothesis a and b can be written as the product 
of primes and therefore k + 1 can also be written 
as the product of those primes.

Hence, it has been shown that every integer greater than 1
can be written as the product of primes.

Proof using Strong Induction
   Example: Prove that every amount of postage of 12 cents 

or more can be formed using just 4-cent and 5-cent stamps. 
Solution: Let P(n) be the proposition that postage of n cents 
can be formed using 4-cent and 5-cent stamps.
– BASIS STEP: P(12), P(13), P(14), and P(15) hold.

• P(12) uses three 4-cent stamps.
• P(13) uses two 4-cent stamps and one 5-cent stamp.
• P(14) uses one 4-cent stamp and two 5-cent stamps.
• P(15) uses three 5-cent stamps.

– INDUCTIVE STEP: The inductive hypothesis  states 
that P(j) holds for 12 j k, where k 15.  Assuming 
the inductive hypothesis, it can be shown that P(k +
1) holds. 

– Using the inductive hypothesis, P(k 3) holds since k
3 12.  To form postage of  k + 1 cents, add a 4-

cent stamp to the postage for k 3 cents.  
Hence, P(n) holds for all n 12.



Proof of Same Example using 
Mathematical Induction

   Example: Prove that every amount of postage of 12 cents 
or more can be formed using just 4-cent and 5-cent stamps. 

Solution: Let P(n) be the proposition that postage of n cents 
can be formed using 4-cent and 5-cent stamps.
– BASIS STEP: Postage of 12 cents can be formed using 

three 4-cent stamps. 
– INDUCTIVE STEP: The inductive hypothesis P(k) for 

any positive integer k is that postage of k cents can be 
formed using 4-cent and 5-cent stamps. To show P(k +
1) where   k 12 , we consider two cases: 

If at least one 4-cent stamp has been used, then a 4-
cent stamp can be replaced with a 5-cent stamp to 
yield a total of k + 1 cents. 
Otherwise, no  4-cent stamp have been used and at 
least three 5-cent stamps were used. Three 5-cent 
stamps can be replaced by four 4-cent stamps to 
yield a total of k + 1 cents.

Hence, P(n) holds for all n 12.

Well-Ordering Property
• Well-ordering property: Every nonempty set of 

nonnegative integers has a least element.
• The well-ordering property is one of the axioms of 

the positive integers listed in Appendix 1.
• The well-ordering property can be used directly in 

proofs, as the next example illustrates.
• The well-ordering property can be generalized. 

– Definition: A set is well ordered if every subset has a 
least element.

• N
• The set of finite strings over an alphabet using lexicographic 

ordering is well ordered.
– We will see a generalization of induction to sets other 

than the integers.

Well-Ordering Property
    Example: Use the well-ordering property to prove the division 

algorithm, which states that if a is an integer and d is a positive 
integer, then there are unique integers q and r with 0 ,
such that   a = dq + r.

Solution: Let S be the set of nonnegative integers of the form  
a dq, where q  is an integer. The set is nonempty since  

dq can be made as large as needed. 
– By the well-ordering property, S has a least element                 

r = a dq0. The integer r is nonnegative. It also must be 
the case that r < d. If it were not, then there would be a 
smaller nonnegative element in S, namely,                                 
a d(q0 + 1) = a dq0 d = r d  > 0. 

– Therefore, there are integers q and r with 0
(uniqueness of q and r is Exercise 37) 2  .

Sec 5.3 - Recursively Defined 
Functions

Definition:  A recursive or inductive definition
of a function consists of two steps.
– BASIS STEP: Specify the value of the function at 

zero.
– RECURSIVE STEP: Give a rule for finding its 

value at an integer from its values at smaller 
integers.

• A function f(n)  is the same as a sequence a0,
a1, … , where ai, where f(i) = ai. This was done 
using recurrence relations in Section 2.4.



Recursively Defined Pictures Recursively Defined Functions
Example:  Suppose f is defined by:

         f(0) = 3, 
         f(n + 1) = 2f(n) + 3 
    Find f(1), f(2), f(3), f(4)
    Solution:

• f(1) = 2f(0) + 3 = 2 3 + 3 = 9 
• f(2) = 2f(1)+ 3 = 2 9 + 3 = 21 
• f(3) = 2f(2) + 3 = 2 21 + 3 = 45 
• f(4) = 2f(3) + 3 = 2 45 + 3 = 93 
 

Example:  Give a recursive definition of the factorial 
function n!:

Solution:
f(0) = 1 
f(n + 1) = (n + 1) f(n)

 

Recursively Defined Functions
   Example: Give a recursive definition of:

   Solution: The first part of the definition is

   The second part is

Fibonacci Numbers
   Example : The Fibonacci numbers are 

defined as follows:
f0 = 0 
f1 = 1 
fn = fn 1 + fn 2

    Find f2, f3 , f4 , f5 .
• f2 = f1 + f0 = 1 + 0 = 1 
• f3 = f2 + f1 = 1 + 1 = 2 
• f4 = f3 + f2 = 2 + 1 = 3 
• f5 = f4 + f3 = 3 + 2 = 5 

 

Fibonacci 
(1170- 1250)



Fibonacci Numbers  
     Example 44:
     Show that whenever n 3, fn > n 2, where   = (1 5)/2. 
     Solution:  Let P(n) be the statement  fn > n 2 . Use strong induction to 

show that P(n) is true whenever  n 3. 
– BASIS STEP: P(3) holds since  < 2 = f3 

                                           P(4) holds since 2  = (3 5)/2 < 3 = f4 . 
– INDUCTIVE STEP: Assume that P(j) holds, i.e.,  fj > j 2  for all integers j

with
       3 j k, where k 4. Show that P(k + 1) holds, i.e.,  fk+1 > k 1 .

• Since 2  =  + 1 (because is a solution of x2 x 1 = 0),

• By the inductive hypothesis, because k 4 we have

• Therefore, it follows that

• Hence, P(k + 1) is true.  

2  .

Lamé’s Theorem 

   Laméé’s Theorem: Let a and b be positive integers 
with a b.  Then the number of divisions used by the 
Euclidian algorithm to find gcd(a,b) is less than or 
equal to five times the number of decimal digits in b.

     Proof: in book. 
      

• As a consequence of Lamé’s Theorem, O(log 
b) divisions are used by the Euclidian 
algorithm to find gcd(a,b) whenever a > b.

 

Gabriel Lamé 
(1795-1870)

Lamé’s Theorem was the first result in computational complexity

Recursively Defined Sets and Structures

Recursive definitions of sets have two parts:
– The basis step specifies an initial collection of elements.
– The recursive step gives the rules for forming new elements 

in the set from those already known to be in the set.
• Sometimes the recursive definition has an exclusion 

rule, which specifies that the set contains nothing other 
than those elements specified in the basis step and 
generated by applications of the rules in the recursive 
step. 

• We will always assume that the exclusion rule holds, 
even if it is not explicitly mentioned. 

• We will later develop a form of induction, called 
structural induction, to prove results about recursively 
defined sets. 

Recursively Defined Sets and 
Structures

Example : Subset of Integers  S:
BASIS STEP S.
RECURSIVE STEP: If x S and y S, then x + y is in S.

• Initially 3 is in S, then 3 + 3 = 6, then 3 + 6 = 9, etc.
Example: The natural numbers N.

BASIS STEP N.
RECURSIVE STEP: If n is in N, then n + 1 is in N.  

• Initially 0 is in S, then 0 + 1 = 1, then 1 + 1 = 2, etc.



Strings
   Definition: The set  * of strings over the alphabet 

:
BASIS STEP: * ( is the empty string)
RECURSIVE STEP: If w is in * and x is in ,

then wx *.

   Example:  If = {0,1}, the strings in in * are the 
set of all bit strings, ,0,1, 00,01,10, 11, etc. 

   Example:  If = {a,b}, show that aab is in *. 
– Since * and a , a *.
– Since a * and a , aa *.
– Since aa * and b , aab *.

String Concatenation
Definition: Two strings can be combined via the 

operation of concatenation. Let be a set of 
symbols and * be the set of strings formed from 
the symbols in . We can define the concatenation 
of two strings, denoted by recursively as follows.
BASIS STEP: If w *, then w = w.
RECURSIVE STEP: If w1 * and w2 * and x ,

then w (w2 x)= (w1 w2)x.
• Often w1 w2 is written as w1 w2.
• If w1  = abra and w2  = cadabra, the concatenation        

w1 w2 = abracadabra.

Length of a String

   Example: Give a recursive definition of 
l(w), the length of the string w.

   Solution: The length of a string can be 
recursively defined by:
l(w) = 0;
l(wx) = l(w) + 1 if w * and x .

Balanced Parentheses

   Example: Give a recursive definition of the 
set  of balanced parentheses P.

   Solution:
BASIS STEP: () P
RECURSIVE STEP: If w P, then () w P,  (w)

P and       w () P.
• Show that (() ()) is in P.
• Why is ))(() not in P?



Well-Formed Formulae in Propositional Logic
   Definition: The set of well-formed formulae in 

propositional logic involving T, F, propositional variables, 
and operators from the set { }.

BASIS STEP:  T,F, and s, where s is a propositional 
variable, are well-formed formulae.

RECURSIVE STEP: If E and F are well formed 
formulae, then (¬ E),  (E F), (E F), (E F), (E 
F), are well-formed formulae.

Examples: ((p q q FF)) is a well-formed formula.
pq is not a  well formed formula.

Rooted Trees
   Definition: The set of rooted trees, where a rooted 

tree consists of a set of vertices containing a 
distinguished vertex called the root, and edges 
connecting these vertices, can be defined recursively 
by these steps:
BASIS STEP:  A single vertex r is a rooted tree.
RECURSIVE STEP: Suppose that T1, T2, …,Tn are 

disjoint rooted trees with roots r1, r2,…,rn, respectively. 
Then the graph formed by starting with a root r, which 
is not in any of the rooted trees T1, T2, …,Tn, and 
adding an edge from r to each of the vertices r1,
r2,…,rn, is also a rooted tree.

   

Building Up Rooted Trees

• Trees are studied extensively in Chapter 11.
• Next we look at a special type of tree, the full binary 
tree. 

How do you construct this rooted 
tree recursively?



Full Binary Trees

   Definition: The set of full binary trees can
be defined recursively by these steps.
BASIS STEP: There is a full binary tree 

consisting of only a single vertex r.
RECURSIVE STEP: If T1 and T2 are disjoint full 

binary trees, there is a full binary tree, denoted 
by T1 T2, consisting of a root r together with 
edges connecting the root to each of the roots of 
the left subtree T1 and the right subtree T2. 

Building Up Full Binary Trees

What can you say about the nonleaf nodes in a full binary tree?

Induction and Recursively Defined Sets
   Example:  Show that the set S defined  by specifying that 3 S and that 

if x S and   y S, then x + y is in S, is the set of all positive integers 
that are multiples of 3.

    Solution: Let A be the set of all positive integers divisible by 3. To 
prove that      A = S, show that A is a subset of S and S is a subset of A.
– A S: Let P(n) be the statement that 3n belongs to S.

BASIS STEP: 3 1 = 3 S, by the first part of recursive definition.
INDUCTIVE STEP: Assume P(k) is true. 
By the second part of the recursive definition, if 3k S, then since 3 S, 3k 

+ 3 = 3(k + 1 S. 
Hence, P(k + 1) is true. 

– S A:
BASIS STEP: 3 S by the first part of recursive definition, and   3 = 3 1.
INDUCTIVE STEP:  The second part of the recursive definition adds x +y to 
S, if both x and y are in S.
If x and y are both in A, then both x and y are divisible by 3.
By part (i) of Theorem 1 of Section 4.1, it follows that  x + y is divisible by 3.

Structural Induction
   We used mathematical induction to prove a result 

about a recursively defined set. Next  we study a 
more direct form induction for proving results about 
recursively defined sets.

Definition: To prove a property of the elements of a 
recursively defined set, we use  structural induction.
BASIS STEP: Show that the result holds for all elements 

specified in the basis step of the recursive definition.
RECURSIVE STEP: Show that if the statement is true for 

each of the elements used to construct new elements in 
the recursive step of the definition, the result holds for 
these new elements. 

• The validity of structural induction can be shown to 
follow from the principle of mathematical induction. 



Full Binary Trees
   Definition: The height h(T) of a full binary tree T is

defined recursively as follows:
– BASIS STEP: The height of a full binary tree T

consisting of only a root r is h(T) = 0.
– RECURSIVE STEP: If T1 and T2 are full binary trees, 

then the full binary tree T = T1·T2 has height                             
h(T) = 1 + max(h(T1),h(T2)).

• The number of vertices  n(T) of a full binary tree T
satisfies the following recursive formula:
– BASIS STEP: The number of vertices of a full binary 

tree T consisting of only a root r is n(T) = 1.
– RECURSIVE STEP: If T1 and T2 are full binary trees, 

then the  full binary tree T = T1·T2 has the number of 
vertices                                                                 

n(T) = 1 + n(T1) + n(T2).

Structural Induction and Binary Trees

  Theorem: If T is a full binary tree, then   n(T 2h(T)+1 – 1. 
Proof: Use structural induction.

– BASIS  STEP: The result holds for a full binary tree consisting 
only of a root, n(T) = 1 and h(T) = 0.

   Hence, n(T) = 1 20+1 – 1   = 1. 
– RECURSIVE STEP:  Assume n(T1 2h(T1)+1 – 1 and also                   

n(T2 2h(T2)+1  – 1 whenever T1 and T2 are full binary trees.

n(T)   =  1 + n(T1) + n(T2)                      (by recursive formula of n(T))
          1 + (2h(T1)+1 – 1) + (2h(T2)+1 – 1)  (by inductive hypothesis)
          2 2h(T1)+1 ,2h(T2)+1 ) – 1 
          = max(h(T1),h(T2))+1 – 1                   (max(2x , 2y)= 2max(x,y) )
          = h(t) – 1                                     (by recursive definition of h(T))
          = 2h(t)+1 – 1

2  .

Generalized Induction
• Generalized induction is used to prove results about 

sets other than the integers that have the well-
ordering property. (explored in more detail in 
Chapter 9)

• For example, consider an ordering on N N,
ordered pairs of nonnegative integers. Specify that 
(x1 ,y1) is less than or equal to (x2,y2) if either x1 < 
x2, or x1 = x2 and y1 <y2 . This is called the 
lexicographic ordering.

• Strings are also commonly ordered by a
lexicographic ordering.

• The next example uses generalized induction to 
prove a result about ordered pairs from N N.

Generalized Induction
    Example: Suppose that am,n is defined for  (m,n) NN ×NN 

by               a0,0 = 0 and
 
 

    Show that am,n = m + n(n + 1)/2 is defined for all    
(m,n) NN ×N.

    Solution: Use generalized induction.
BASIS STEP: a0,0 = 0 = 0 + (0 1)/2
INDUCTIVE STEP: Assume that am,n =  m+ n(n + 1)/2 

whenever(m,n)  is less than (m,n) in the lexicographic 
ordering of  N ×N . 

• If n = 0, by the inductive hypothesis we can conclude 
            am,n = am 1,n + 1 = m 1+ n(n + 1)/2 + 1 = m + n(n + 1)/2 . 

If n > 0, by the inductive hypothesis we can conclude  
              am,n = am,n-1 + 1 = m + n(n   1)/2 +n  = m + n(n + 1)/2 .

0 and

2  .


