
CompSci 102
Discrete Math for Computer Science

March 13, 2012

Prof. Rodger

Slides modified from Rosen

Announcements
• Read for next time Chap. 6.1-6.2
• Recitation on Friday
• Homework 5 out

Strong Induction
• Strong Induction: To prove that P(n) is true 

for all positive integers n, where P(n) is a 
propositional function, complete two steps:
– Basis Step: Verify that the proposition P(1) is 

true.
– Inductive Step: Show the conditional statement           

[P(1) P(2) P(k)] P(k + 1) holds for 
all positive integers k. 

Strong Induction is sometimes called the 
second principle of mathematical induction 
or complete induction.

Strong Induction and the Infinite Ladder
Strong induction tells us that we can reach all rungs if:
1. We can reach the first rung of the ladder.
2. For every integer k, if we can reach the first k rungs, 

then we can reach the (k + 1)st rung. 

To conclude that we can reach every rung by strong 
induction:
• BASIS STEP:  P(1) holds
• INDUCTIVE STEP:  Assume P(1) P(2)
P(k)

holds for an arbitrary integer k, and show that   
    P(k + 1) must also hold.
We  will have then shown by strong induction that for 
every positive integer n, P(n) holds, i.e., we can 
reach the nth rung of the ladder.



Proof using Strong Induction
   Example: Suppose we can reach the first and second 

rungs of an infinite ladder, and we know that if we 
can reach a rung, then we can reach two rungs 
higher. Prove that we can reach every rung.

   (Try this with mathematical induction.)
    Solution: Prove the result using strong induction.

– BASIS STEP: We can reach the first step.
– INDUCTIVE STEP:  The inductive hypothesis is that 

we can reach the first k rungs, for any k 2. 
–  We can reach the  (k + 1)st rung since we can reach 

the (k 1)st rung by the inductive hypothesis. 
– Hence, we can reach all rungs of the ladder. 
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Which Form of Induction Should Be 
Used?

• Can always use strong induction instead of  
mathematical induction. 

• (if it is simpler use mathematical induction). 
• The principles of mathematical induction, 

strong induction, and the well-ordering 
property are all equivalent. (Exercises 41-43)

• Sometimes it is clear how to proceed using one 
of the three methods, but not the other two. 

Completion of the proof of the Fundamental Theorem of Arithmetic
   Example: Show that if n is an integer greater than 1,

then n can be written as the product of primes.

   Solution: Let P(n) be the proposition that n can be written as 
a product of primes.
– BASIS STEP: P(2) is true since 2 itself is prime.
– INDUCTIVE STEP: The inductive hypothesis is P(j) is 

true for all integers j with 2 j  k.
– To show that P(k + 1) must be true under this 

assumption, two cases need to be considered:
• If k + 1  is prime, then P(k + 1) is true.
• Otherwise, k + 1  is composite and can be written 

as the product of two positive integers a and b
with 2 a b < k + 1. By the inductive 
hypothesis a and b can be written as the product 
of primes and therefore k + 1 can also be written 
as the product of those primes.

Hence, it has been shown that every integer greater than 1
can be written as the product of primes.
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Proof using Strong Induction
   Example: Prove that every amount of postage of 12 cents 

or more can be formed using just 4-cent and 5-cent stamps. 
Solution: Let P(n) be the proposition that postage of n cents 
can be formed using 4-cent and 5-cent stamps.
– BASIS STEP: P(12), P(13), P(14), and P(15) hold.

• P(12) uses three 4-cent stamps.
• P(13) uses two 4-cent stamps and one 5-cent stamp.
• P(14) uses one 4-cent stamp and two 5-cent stamps.
• P(15) uses three 5-cent stamps.

– INDUCTIVE STEP: The inductive hypothesis  states 
that P(j) holds for 12 j k, where k 15.  Assuming 
the inductive hypothesis, it can be shown that P(k +
1) holds. 

– Using the inductive hypothesis, P(k 3) holds since k
3 12.  To form postage of  k + 1 cents, add a 4-

cent stamp to the postage for k 3 cents.  
Hence, P(n) holds for all n 12.
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Q: Why do we need 4 basis steps?

Proof of Same Example using 
Mathematical Induction

   Example: Prove that every amount of postage of 12 cents 
or more can be formed using just 4-cent and 5-cent stamps. 

Solution: Let P(n) be the proposition that postage of n cents 
can be formed using 4-cent and 5-cent stamps.
– BASIS STEP: Postage of 12 cents can be formed using 

three 4-cent stamps. 
– INDUCTIVE STEP: The inductive hypothesis P(k) for 

any positive integer k is that postage of k cents can be 
formed using 4-cent and 5-cent stamps. To show P(k +
1) where   k 12 , we consider two cases: 

If at least one 4-cent stamp has been used, then a 4-
cent stamp can be replaced with a 5-cent stamp to 
yield a total of k + 1 cents. 
Otherwise, no  4-cent stamp have been used and at 
least three 5-cent stamps were used. Three 5-cent 
stamps can be replaced by four 4-cent stamps to 
yield a total of k + 1 cents.

Hence, P(n) holds for all n 12.
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Well-Ordering Property
• Well-ordering property: Every nonempty set of 

nonnegative integers has a least element.
• The well-ordering property is one of the axioms of 

the positive integers listed in Appendix 1.
• The well-ordering property can be used directly in 

proofs, as the next example illustrates.
• The well-ordering property can be generalized. 

– Definition: A set is well ordered if every subset has a 
least element.

• N
• The set of finite strings over an alphabet using lexicographic 

ordering is well ordered.
– We will see a generalization of induction to sets other 

than the integers.

Well-Ordering Property
    Example: Use the well-ordering property to prove the division 

algorithm, which states that if a is an integer and d is a positive 
integer, then there are unique integers q and r with 0 ,
such that   a = dq + r.

Solution: Let S be the set of nonnegative integers of the form  
a dq, where q  is an integer. The set is nonempty since  

dq can be made as large as needed. 
– By the well-ordering property, S has a least element                 

r = a dq0. The integer r is nonnegative. It also must be 
the case that r < d. If it were not, then there would be a 
smaller nonnegative element in S, namely,                                 
a d(q0 + 1) = a dq0 d = r d  > 0. 

– Therefore, there are integers q and r with 0
(uniqueness of q and r is Exercise 37) 2  .

Sec 5.3 - Recursively Defined 
Functions

Definition:  A recursive or inductive definition
of a function consists of two steps.
– BASIS STEP: Specify the value of the function at 

zero.
– RECURSIVE STEP: Give a rule for finding its 

value at an integer from its values at smaller 
integers.

• A function f(n)  is the same as a sequence a0,
a1, … , where ai, where f(i) = ai. This was done 
using recurrence relations in Section 2.4.



Recursively Defined Pictures Recursively Defined Functions
Example:  Suppose f is defined by:

         f(0) = 3, 
         f(n + 1) = 2f(n) + 3 
    Find f(1), f(2), f(3), f(4)
    Solution:

• f(1) = 2f(0) + 3 = 2 3 + 3 = 9 
• f(2) = 2f(1)+ 3 = 2 9 + 3 = 21 
• f(3) = 2f(2) + 3 = 2 21 + 3 = 45 
• f(4) = 2f(3) + 3 = 2 45 + 3 = 93 
 

Example:  Give a recursive definition of the factorial 
function n!:

Solution:
f(0) = 1 
f(n + 1) = (n + 1) f(n)
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Fibonacci Numbers
   Example : The Fibonacci numbers are 

defined as follows:
f0 = 0 
f1 = 1 
fn = fn 1 + fn 2

    Find f2, f3 , f4 , f5 .
• f2 = f1 + f0 = 1 + 0 = 1 
• f3 = f2 + f1 = 1 + 1 = 2 
• f4 = f3 + f2 = 2 + 1 = 3 
• f5 = f4 + f3 = 3 + 2 = 5 

 

Fibonacci 
(1170- 1250)

Fibonacci Numbers  
     Example 44:
     Show that whenever n 3, fn > n 2, where   = (1 5)/2. 
     Solution:  Let P(n) be the statement  fn > n 2 . Use strong induction to 

show that P(n) is true whenever  n 3. 
– BASIS STEP: P(3) holds since  < 2 = f3 

                                           P(4) holds since 2  = (3 5)/2 < 3 = f4 . 
– INDUCTIVE STEP: Assume that P(j) holds, i.e.,  fj > j 2  for all integers j

with
       3 j k, where k 4. Show that P(k + 1) holds, i.e.,  fk+1 > k 1 .

• Since 2  =  + 1 (because is a solution of x2 x 1 = 0),

• By the inductive hypothesis, because k 4 we have

• Therefore, it follows that

• Hence, P(k + 1) is true.  

2  .
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 fk+1 =  fk + fk 1 > k 2 + k 3 = k 1.

  k 1  = 2    k 3 = (  + 1) k 3   =  k 3+  1 k 3    = k 2   +  k 3         

fk 1 > k , fk > k .


