CompSci 102 Discrete Math for Computer Science

April 17, 2012

Prof. Rodger

Announcements

- Read for next time Chap. 8.3-8.4, 10.1-10.2
- Last Recitation on Friday
- Test back today

Recurrence Relations
- model lots of problems

• The Tower of Hanoi

- Divide and conquer algorithms
 - Sorting algorithm mergesort
 - Sorting algorithm quicksort
- Tree algorithms
 - Searching for an element in a binary search tree
 - Listing out all elements in a binary search tree

Solving a recurrence relation

- Problem sets up as a recurrence
 - Must have a base case

- Solve the recurrence
 - Use substitution
- Prove correctness
 Proof by induction

- $a_n = a_{n-1} + c$
- $a_0 = 1$
- Solve recurrence
- Then prove true by induction
- What is this an example of?

Proof by induction

Basis:
$$a_0 = 1$$

 $a_n = cn + 1 = c(0) + 1 = 1$
Assume: $a_k = ck + 1$ for all $k < n$
 $a_n = a_{n-1} + c$
 $= [c(n-1) + 1] + c$ by I.H.
 $= cn - c + 1 + c$
 $= cn + 1$

Worst case binary search tree

- $a_n = 2*a_{n-1} + c$
- $a_0 = 0$
- Solve recurrence
- Then prove true by induction
- What is this an example of?

 $a_0 = 0$ $a_n = 2 * a_{n-1} + c$ $= 2*[2*a_{n-2} + c] + c$ $= 2^2 a_{n-2} + 2c + c$ $= 2^{2} * [2 * a_{n-3} + c] + 2c + c$ $= 2^3 a_{n-3} + 4c + 2c + c$ $= 2^{k} a_{n-k} + c(2^{k-1} + \ldots + 2 + 1)$ $= 2^{k} a_{n-k} + c(2^{k} - 1)$

$$= 2^{k} a_{n-k} + c(2^{k} - 1)$$

...
let $n-k = 0 \rightarrow k = n$
 $= 2^{n} a_{0} + c(2^{n} - 1)$
 $= 2^{n} *(0) + c(2^{n} - 1)$
 $= c (2^{n} - 1)$

Note: this is exponential!

Proof by Induction

Basis:
$$a_0 = 0$$

 $a_0 = c(2^0 - 1) = c(1 - 1) = 0$
Assume: $a_k = c (2^k - 1)$ for all $k < n$
 $a_n = 2 * a_{n-1} + c$
 $= 2 * [c(2^{n-1} - 1)] + c$ by I.H.
 $= c2^n - 2c + c = c(2^n - 1)$

Towers of Hanoi

- Figures
 - Figs 1-4
 - problem size n-1
 - Figs 4-5
 - Constant work
 - Figs 5-7
 - problem size n-1

From Tower C to Tower B

From Tower A to Tower B

- $a_n = 2*a_{n/2} + c$
- $a_1 = c$
- Solve recurrence
- Then prove true by induction
- What is this an example of?

 $a_1 = c$ $a_n = 2*a_{n/2} + c$ $= 2*[2 * a_{n/4} + c] + c$ $= 2^2 * a_{n/4} + 2c + c$ $= 2^2 * [2 * a_{n/8} + c] + 2c + c$ $= 2^3 * a_{n/8} + 4c + 2c + c$. . . $= 2^{k} * a_{n/2}^{k} + c(2^{k} - 1)$ Let $n = 2^k$

=
$$n * a_1 + c(n - 1)$$

= $n * (c) + cn - c$
= $2cn - c$

$$a_n = 2cn - c$$

Prove by induction

Traversal in binary search tree preorder, postorder, inorder

- $a_n = 2*a_{n/2} + cn$
- $a_1 = c$
- Solve recurrence
- Then prove true by induction
- What is this an example of?

 $a_1 = c$ $a_n = 2*a_{n/2} + cn$ $= 2*[2*a_{n/4} + cn/2] + cn$ $= 2^2 a_{n/4} + 2cn$ $= 2^2 [2*a_{n/8} + cn/4] + 2cn$ $= 2^3 * a_{n/8} + 3cn$. . . $= 2^{k} * a_{n/2}^{k} + kcn$ Let $n/2^k = 1 \rightarrow k = \log_2 n$

- $= n * a_1 + (\log_2 n) cn$
- = nc + cnlog₂ n
- $= \operatorname{cn}(1 + \log_2 n)$

Proof by induction Basis: $a_1 = c$ $a_1 = cn(1 + \log_2 n)$ $= c(1)(1 + \log_2 1)$ = c * (1 + 0) = cAssume: $a_k = ck + ck \log_2 k$ for all k<n

$$a_{n} = 2 * a_{n/2} + cn$$

= 2 * [cn/2 + cn/2 log₂ n/2] + cn
= cn + cn (log₂ n + log₂ ¹/₂) + cn
= cn(2 + log₂ n - 1) = cn(1 + log₂ n)

MergeSort

• n log n

Definition

- A linear homogeneous recurrence relation of degree k with constant coefficients is a recurrence relation of the form
- $a_n = c_1 a_{n-1} + c_2 a_{n-2} + \dots + c_k a_{n-k}$
- Where c_i are real numbers and $c_k \neq 0$

8.2 - Theorem 1

Let c₁ and c₂ be real numbers. Suppose that
 r² - c₁ r - c₂ = 0 has two distinct roots
 r₁ and r₂. Then the sequence {a_n} is a solution of the recurrence

$$a_n = c_1 a_{n-1} + c_2 a_{n-2}$$

if and only if

$$a_n = \propto_1 r_1^n + \propto_2 r_2^n$$

for all n where \propto_1 and \propto_2 are constants

• What is the solution to the recurrence relation $a_n = a_{n-1} + 2 a_{n-2}$ with $a_0 = 2, a_1 = 7$?

- What is the solution to the recurrence relation $a_n = a_{n-1} + 2 a_{n-2}$ with $a_0 = 2, a_1 = 7$? • $r^2 - c_1 r - c_2 = 0$ $r^2 - r - 2 = 0 \rightarrow r_1 = 2, r_2 = -1$ • $a_n = \alpha_1 r_1 + \alpha_2 r_2$ • $a_n = \alpha_1 2^n + \alpha_2 - 1^n$
- $2 = a_0 = \alpha_1 \cdot 1 + \alpha_2 \cdot 1$
- $7 = a_1 = \alpha_1 \cdot 2 + \alpha_2 \cdot -1$
- $\rightarrow 9 = 3 \ \alpha_1$, $\alpha_1 = 3$, $\alpha_2 = -1$
- $a_n = 3 \cdot 2^n (-1)^n$

8.2 - Theorem 2

Let c₁ and c₂ be real numbers with c₂ ≠ 0.
 Suppose that r² - c₁ r - c₂ = 0 has only one root r₀. A sequence {a_n} is a solution of the recurrence relation

$$a_n = c_1 a_{n-1} + c_2 a_{n-2}$$

if and only if

$$a_n = \propto_1 r_0^n + \propto_2 n r_0^n$$

for all n where \propto_1 and \propto_2 are constants

Many other theorems

• See theorems 2-6 in Chapter 8.2

THEOREM 6

Suppose that $\{a_n\}$ satisfies the linear nonhomogeneous recurrence relation

$$a_n = c_1 a_{n-1} + c_2 a_{n-2} + \dots + c_k a_{n-k} + F(n),$$

where c_1, c_2, \ldots, c_k are real numbers, and

$$F(n) = (b_t n^t + b_{t-1} n^{t-1} + \dots + b_1 n + b_0) s^n,$$

where b_0, b_1, \ldots, b_t and s are real numbers. When s is not a root of the characteristic equation of the associated linear homogeneous recurrence relation, there is a particular solution of the form

$$(p_t n^t + p_{t-1} n^{t-1} + \dots + p_1 n + p_0)s^n$$
.

When s is a root of this characteristic equation and its multiplicity is m, there is a particular solution of the form

-

$$n^{m}(p_{t}n^{t} + p_{t-1}n^{t-1} + \dots + p_{1}n + p_{0})s^{n}$$

Theorem 1 in 8.3

Let f be an increasing function that satisfies the recurrence relation

$$f(n) = af(n/b) + c$$

whenever n is divisible by b, where $a \ge 1$, b is an integer greater than 1, and c is a positive real number. Then

(n) is
$$\begin{cases} O(n^{\log_b a}) \text{ if } a > 1, \\ O(\log n) \text{ if } a = 1. \end{cases}$$

Furthermore, when $n = b^k$ and $a \neq 1$, where k is a positive integer,

$$f(n) = C_1 n^{\log_b a} + C_2,$$

where $C_1 = f(1) + c/(a-1)$ and $C_2 = -c/(a-1)$.

Master Theorem in 8.3

MASTER THEOREM Let f be an increasing function that satisfies the recurrence relation

$$f(n) = af(n/b) + cn^d$$

whenever $n = b^k$, where k is a positive integer, $a \ge 1$, b is an integer greater than 1, and c and d are real numbers with c positive and d nonnegative. Then

$$f(n) \text{ is } \begin{cases} O(n^d) & \text{ if } a < b^d, \\ O(n^d \log n) & \text{ if } a = b^d, \\ O(n^{\log_b a}) & \text{ if } a > b^d. \end{cases}$$