Due Date: Thursday, Feb 2, 2012

1 Growth of functions and asymptotic behaviour (20 points)

In each of the following cases, rank the functions by order of their growth.

- $2^{\log n},(\log n)^{\log n}, e^{n}, 4^{\log n}, n!, \sqrt{\log n}$
- $\left(\frac{3}{2}\right)^{n}, n^{3},(\log n)^{2}, \log (n!), 2^{2^{n}}, n^{\frac{1}{\log n}}$

2 More on asymptotic behaviour (20 points)

Show that, if c is a positive real number then $g(n)=1+c+c^{2}+c^{3}+c^{4}+\ldots . c^{n}$ is :

- $\Theta(1)$ if $c<1$
- $\Theta(n)$ if $c=1$
- $\Theta\left(c^{n}\right)$ if $c>1$

3 Solving reccurences (20 points)

Solve the following recurrences by expanding the terms and give a Θ bound for each of them.

- $T(n)=5 T(n / 4)+n$
- $T(n)=9 T(n / 3)+n^{2}$
- $T(n)=T(\sqrt{n})+1$
- $T(n)=T(n-1)+n^{c}$

4 Comparing diffrent algorithms (20 points)

Suppose you are choosing between the following three algorithms:

- Algorithm A solves problems by dividing them into five subproblems of half size each and recursively solving each of the subproblem, and then combining the solutions in linear time
- Algorithm B solves problems of size n by recursively solving the two subproblems of size $n-1$ and then combining the solutions in constant time.
- Algorithm C solves the problems oif size n by dividing them into nine subproblems of size $n / 3$ and recursively solving each subproblem and then combining the solutions into $O\left(n^{2}\right)$ time.
What are the running times of each of these algorithms and which would you choose?

5 Inversions (20 points)

For a sequence of natural numbers $S=\left\langle a_{1}, \ldots, a_{n}\right\rangle$, an inversion is a pair of elements $\left(a_{i}, a_{j}\right)$ such that $i<j$ but $a_{i}>a_{j}$. For example, the inversions in sequence $\langle 1,4,2,3\rangle$ are $(4,2)$ and $(4,3) ; 4$ appears before both 2 and 3 . Given a sequence S of n natural numbers, describe an $O(n \log n)$-time algorithm to count the number of inversions in S. Prove its correctness and running time.
(Hint: Modify a sorting algorithm.)

