
CPS 140 Project 1 Spring 2012

Project Due: Thursday, Feb. 9, Midnight
30 points

The company Googsoft has hired you to write an interpretor for a simple programming language
called MOUSECAT for simulating cat and mouse games. This language allows the programmer to
specify the starting positions and movements of cats and mice. For valid MOUSECAT programs,
you will visualize the motion of the cats and mice (with rules given in project 3).

The MOUSECAT programming language has a program definition (shown first) and seven types
of statements. Note v is a variable, i and j are integers, d is a direction (north, south, east or west)
and stmts represents 1 or more valid statements.

Statement Meaning

size i j begin stmts halt program definition - defines height
i and width j of the room.

cat v i j d ; draw a cat at position (i, j) in direction d

mouse v i j d ; draw a mouse at position (i, j) in direction d

hole i j ; draw a hole at position (i, j)

move v ; move the critter one space in its current direction

move v i ; move the critter i spaces in its current direction

clockwise v ; turn the critter v 90 degrees clockwise

repeat i execute stmts i times
stmts

end ;

Here is a sample MOUSECAT program.

size 40 60
begin // room has height 40 and width 60

cat charlotte 12 1 west ; // a cat, charlotte, at (12,1) heading west
mouse 1A 3 10 east ; // a mouse, 1A, (3,10) heading east
hole 9 10 ; // a hole at (9,10)
repeat 3

move charlotte ; // charlotte moves one step west
move 1A ; // 1A moves one step east

end ;
clockwise charlotte ;
clockwise charlotte ;
clockwise charlotte ; // charlotte now heading south
repeat 3

move 1A ; // 1A moves one step east
move charlotte 3 ; // charlotte moves three steps west

end ;
halt

1



This sample program draws a cat, mouse, and hole and then moves the critters around the room.
We will assume that all rooms are a grid of points (x,y) with width w and height h with x from
0 to width and y positions from 0 to height. The upper left point is point (0,0). A comment is
anything from // to the end of the line.

A picture showing a portion of the room and the critters might look like the following picture. The
starting position of the cat is indicated by C, the starting position of the mouse is indicated by M,
the hole is indicated by a circle, and the movement of critters is indicated by a line.

The interpretor for MOUSECAT will be built in three parts. For this part, you will write a
scanner that will identify the elementary parts (tokens) of a MOUSECAT program and store these
parts for later use. In project 2, you will write a parser that will identify syntactically correct
MOUSECAT programs. Project 3 will further extend the parser into an interpretor that will
execute a MOUSECAT program and generate an animation of cats and mice.

DESCRIPTION OF THE SCANNER

Given a sample MOUSECAT program, your first task is to write a scanner to identify all its parts
(or tokens).

The purpose of the scanner is to find the next token in your program, enter its value into a data
structure (called a symbol table) that handles searches and insertions, and return 1) a reference
to the tokens location in the data structure, and 2) a unique symbol, called the token type, which
indicates the type of the token. Not every token is entered into the symbol table, but for those
that are, make sure that there is only one copy of each. Thus, upon encountering a token, search
the symbol table first to see if it is already there. If so, return a reference to its location. If it is
not in the symbol table, insert it, and then return the reference to its location.

Your program will repeatedly compute the next token type and the reference to its location in the
symbol table. For this project, you will print the token type and its values in the symbol table,
and then request the next token (thus losing the information about the previous token). Although
we are throwing away this information now, we will use it in projects 2 and 3.

Be sure to keep track of the program line number for reporting where errors occur.

2



TOKENS

The tokens of a MOUSECAT program consist of keywords, variable names, integer constants, and
punctuation symbols. Tokens are separated by blanks, end-of-line, and end-of-file.

Not all tokens are entered into the symbol table. If they are to be entered, then a character value
and an integer value are inserted for each token.

The tokens of the MOUSECAT programming language and their associated types are:

Keywords: Keywords are not entered into the symbol table. They have no value. For each
keyword found, return its type and NULL for its value. Keywords are only formed using lowercase
letters. The uppercase and lowercase of the same letter should be treated as the same, so beGIN
is the same as begin.

KEYWORD TYPE

begin begin
halt halt
cat cat
mouse mouse
clockwise clockwise
move move
north north
south south
east east
west west
hole hole
repeat repeat
size size
end end

Variables: Variables are entered into the symbol table. Valid variable names may contain any
number of letters and digits. If it contains a digit and is length 3 or less, then it must have at
least one letter (1A and 99a3 are valid variable names). The uppercase and lowercase of the same
letter should be treated as the same, so SUm is the same variable as sum. The type of a variable
is variable. The character value associated with a variable is the name of the variable. with all
uppercase letters converted to lowercase. Its integer value is set to 0 for now (it is not needed until
project 3). (Exceptions: Keywords are not variables. So, east is a keyword, not a variable!)

Integers: Integers are entered into the symbol table. Valid integers may contain up to three
digits (0-9). If it starts with 0 then it must be of length 1. The type of an integer is integer.
Integers are read in as character strings. Store the character value and convert the character string
to an integer, and also store the integer value (it will not be used until project 3).

Punctuation Symbols: These are not entered into the symbol table. They do not have values.
For each symbol found, return its type and NULL for its value. There is only one punctuation
symbol in the MOUSECAT language.

SYMBOL TYPE

; ;

3



Comments are not tokens! In addition to tokens, your program may contain comments. A
comment begins with // and includes everything to the end of that line. All comments are to be
ignored. When a comment is encountered, ignore everything up until the end of the comment.
Since comments are not tokens, there is no type associated with a comment.

INPUT

A data file consists of one MOUSECAT program. Sample data files pX.mc (where X=1,2,3,. . .)
will be available soon. These are not necessarily the data files that your program will be tested on.
To ensure your program runs correctly, you should also create your own data files for testing. A
sample data file called p1.mc is:

// program 1
size 30 40
begin

cat charlotte 20 21 east ;
move charlotte 4 ;

halt

OUTPUT

For each MOUSECAT program print out the following information for each token in three columns:
the type of token, the character value, and the integer value. If the token is not entered into the
symbol table, then the character and integer values are left blank.

Possible output for the file p1.mc above might be:

OUTPUT FOR PROGRAM

TYPE CH VALUE INT VALUE
==== ======== =========
size
integer 30 30
integer 40 40
begin
cat
variable charlotte 0
integer 20 20
integer 21 21
east
;
move
variable charlotte 0
integer 4 4
;
halt

4



ERROR HANDLING

Your program should handle files that contain invalid tokens. When an invalid token is found,
report it as an error and continue processing.

For example, consider the following MOUSECAT program.

cat charlotte 20 21 east ;
mouse 98 5 6 north+1 ;
hole 5874 8; // Wow * * *
move charlotte east - 3 ;

This program is loaded with syntactic errors, however, for project 1 identify only invalid tokens.
The syntactic errors will be caught in project 2.

The invalid tokens above are:

• In line 2: north+1 is not a valid variable name

• In line 3: note that 5874 is NOT an integer and is NOT an error, it is a valid variable name.

• In line 3: 8; (there is no separator between “8” and “;”, so they are treated as one token,
which is invalid.)

• In line 4: − is an invalid token.

When an invalid token is encountered in the scanner, print an error message and the token, then
continue scanning for the next token.

THE PROGRAM AND ITS SUBMISSION

Your program should be written in Java and compile in Eclipse. The name of the file with main
should be called mousecat.java

Your program will be graded on style as well as content. Style will count for 20% of your grade.
Appropriate style for this course includes:

• Modularity - Your program should be divided into multiple classes. Comments should describe
each part of the class(es).

• Liberal use of comments - In addition to the comment for each module, each nontrivial section
of code should have a comment describing its purpose. Comments should not merely echo
the code.

• Readability - Your program should use the indentation and spacing appropriately to make it
easily readable. Your comments should be clearly distinguishable from the code.

• Appropriate variable names - Give variables names that describe their function.

• Understandable output - Your program should indicate its input as well as its output in a
clear and readable manner. Remember, the output from your program is the only indication
that it works!

5



The remaining part of your grade is based on meeting the specifications of the assignment. If you
do not get your program correctly running, for small amount of partial credit you may generate
output that identifies which part of your program are correctly working. This output must also be
clearly understandable or no credit will be given!

You should create a file called README that contains your name, the amount of time the project
took, and anyone you received help from. Also describe how to run your program

Submit your program using Eclipse and Ambient under project1.

Late Policy

Programs not submitted by the due date are penalized 10% up to three days late and 20% if four
or more days late (Sunday does not count as a late day). You must meet with Prof. Rodger if your
program is not turned in one week after the deadline.

EXTRA CREDIT (4 pts)

For extra credit, if a word is not a valid token, assume that it contains tokens that are not separated
by whitespace, try to identify the tokens, print a warning message, and then return the tokens one
at a time as valid tokens.

For any part that cannot be identified, report an error, discard the invalid token, and check the
next token.

Examples:

The word one15; is actually two tokens: one15 and ;. Split this into two tokens, “one15” first and
then “;”. You should either print one warning message for both tokens, or two separate warning
messages.

For example, Me3*98 would be returned as the variable Me3, discard the *, and later return the
integer 98.

The word begin∗ should be reported as the keyword begin and an invalid token ∗.

The words starmove and movestar are valid variable names. Even though movestar contains the
keyword move, this is a valid variable name, so don’t assume that an error has been made.

6


