CPS 140 Project 2 Spring 2012

Part I Due: Thursday, March 22, 11:59pm
Part II Due: Thursday, March 29, 11:59pm
30 points

PART 1

Write a valid MOUSECAT program with at least 20 statements. The room should be no larger
than 80 by 80.

PART 2

The purpose of this assignment is to write a parser for the MOUSECAT programming language (see
the project 1 handout for a description of the tokens in the MOUSECAT programming language).
Your program will read in a data file containing a MOUSECAT program, and will determine if
it is a syntactically correct MOUSECAT program using an SLR(1) parser. In project 3 you will
continue to build on this project, writing an interpretor.

The MOUSECAT programming language has a program definition (shown first) and seven types
of statements:

Statement ‘ Meaning
size i j begin stmts halt | program definition - defines height
1 and width j of the room.

catvi jd; draw a cat at position (,7) in direction d
mouse v ¢ j d ; draw a mouse at position (7, j) in direction d
hole 7 j ; draw a hole at position (7, j)
move v ; move the critter one space in its current direction
move v 1 ; move the critter ¢ spaces in its current direction
clockwise v ; move the critter v 90 degrees clockwise
repeat ¢ execute stmts ¢ times

stmts
end ;

where v is a variable, i and j are integers, d is a direction (north, south, east or west) and stmts
represents 1 or more valid statements.



CFG for the MOUSECAT Programming Language

(1) <Program> — size int int begin <List> halt
(2) <List> —  <Statement> ;
(3) <List> —  <List> <Statement> ;
(4) <Statement> — cat var int int <Direction>
(5) <Statement> — mouse var int int <Direction>
(6) <Statement> — hole int int
(7) <Statement> — move var
(8) <Statement> — move var int
(9) <Statement> — clockwise var

(10) <Statement> — repeat int <List> end

(11) <Direction> — north

(12) <Direction> — south

(13) <Direction> — east

(14) <Direction> — west

9

where “var” represents a variable and “int” represents an integer. The productions are numbered.

Grammar for MOUSECAT: In shorter notation (mostly use first symbol of each variable or
terminal, except use size(z), move (o), clockwise(l), end(d), halt(t)), and adding a new start symbol

(P7):

0 P — P

(1) P — ziibLt
(2) L — S;

3 L — LS;

4 S — cviiD
(5) S — mviiD
(6) S — hii

(7) S — ov

8 S — ovi

9 S = lv
1) S — rilLd
(I1) D — n
(12) D — s
(13) D — e
(14) D — w

DESCRIPTION OF YOUR PROGRAM

Given a MOUSECAT program, your task is to 1) scan the program and identify all its parts (or
tokens) and 2) parse the program using an SLR parser and identify if it is syntactically correct.
If it is, then produce a list of rules starting with the start symbol that will produce a rightmost
derivation of the program.

Part 1 - The Scanner

The purpose of the scanner is to find the next token in your program, enter its value into a symbol
table (a data structure that handles searches and insertions), and return 1) the location to the
tokens value in the symbol table, and 2) a unique symbol, called the token type, which indicates



the type of the token. If a value already exists in the symbol table, don’t reenter it. This part was
done in Project 1.

Part 2 - The Parser

You are to write an SLR(1) parser to produce rightmost derivations of MOUSECAT programs.
The parser (called the driver in project 1) will call the scanner whenever it needs the next token in
the MOUSECAT program. The token type will be shifted onto the SLR parsing stack. The pointer
to the token’s value in the symbol table will be ignored for now. It will be used in project 3.

An SLR(1) Parse Table for the MOUSECAT programming language and its associated transition
diagram are attached to this handout. The columns are labeled by symbols in the grammar (both
terminals and nonterminals) and an end-of-string marker ($) (in this case, the end-of-string marker
represents the end of a MOUSECAT program or end-of-file marker). The rows represent the state
numbers from the transition diagram. Each entry in the table represents one of four actions. There
may be additional information stored in the entry.

Actions:

e ERROR - The MOUSECAT program is not syntactically correct.

ACCEPT - The MOUSECAT program is syntactically correct.

SHIFT - Shift the input symbol (lookahead) and state number onto the stack. A state number
must be stored in this table entry.

REDUCE - Replace the righthand side (rhs) of the rewrite rule that is on top of the stack
with its lefthand side (lhs). You might want to store some representation of the rule in this
table entry.

The file parsedata contains the data file to create the SLR(1) Parse Table in this handout. You
should read in this file before a MOUSECAT program to create the data entries in the parse table.
The format of the file is: 1 row of headers for the terminals, 38 rows of entries, 1 row of headers
for the variables, and 38 rows of entries. Each row in the table first has the number of the row,
except the header rows, which have no entry. Items are separated by “&”. If there is no entry in a
column, then there will be two adjacent &’s.

An SLR(1) parser when applied to a string in the language it represents will produce a rightmost
derivation (in reverse order) of the string. In order to list the rules in the order they would
be used in a rightmost derivation (starting with the start symbol), the rules must be stacked.
Whenever a REDUCE action is encountered in the parse table, store the rule on a rule stack (this
is a different stack than the parsing stack). When the starting rule is encountered, print all the
rules on the stack. Thus, for each MOUSECAT program that is syntactically correct, print the
production rules that would derive the MOUSECAT program. Whenever there is an error, you do
not have to dump the stack.

The parsing routine accesses a parser stack. Terminals and variables from the grammar, and state
numbers can appear on this stack.

Consider the following MOUSECAT program.

// program 1



size 30 40
begin
cat char 20 21 east ;

move char 4 ;
halt

This MOUSECAT program can be derived by applying the following production rules (using the
first letter of each variable):

RULES DERIVATION

P — size int int begin L halt size 30 40 begin L halt

L—-LS; size 30 40 begin L S ; halt

S — move var int size 30 40 begin L move char 4 ; halt

L—S; size 30 40 begin S ; move char 4 ; halt

S — cat var int int D size 30 40 begin cat char 20 21 D ; move char 4 ; halt
D — east size 30 40 begin cat char 20 21 east ; move char 4 ; halt

Note: An SLR parser will generate these rules in reverse order.
INPUT:
The format of the data file is the same as it was in project 1.

A data file consists of one MOUSECAT program. You may assume that MOUSECAT programs
contain valid tokens. Sample data files are available on the CompSci 140 web page. These are
not necessarily the data files that your program will be tested on. To ensure your program runs
correctly, you should also create your own data files for testing.

OUTPUT:

Indicate whether or not the MOUSECAT program is syntactically correct. For each syntactically
correct MOUSECAT program, you should list the production rules that form a rightmost derivation
of the program, starting with the start symbol. (starting with the P rule, show the last rule found
first, i.e. show the rules in the order they appear in the previous example (just the rules, you do
not need to show the derivation)). If a program is not syntactically correct, then do not show the
rules.

THE PROGRAM AND ITS SUBMISSION

Your program should be written in Java and compile in Eclipse. You should start by making a
copy of your program from project 1. The name of the file with main for this part should be called
mousecatpart2.java

Your program will be graded on style as well as content. Style will count for 20% of your grade.

Appropriate style for this course includes:

o Modularity - Your program should be divided into classes. Comments should describe each
part of the classes.

e Liberal use of comments - In addition to the comment for each part of a class, each nontrivial
section of code (for example a loop) should have a comment describing its purpose. Comments
should not merely echo the code.



o Readability - Your program should use the indentation and spacing appropriately to make it
easily readable. Your comments should be clearly distinguishable from the code.

e Appropriate variable names - Give appropriate names that describe their function for vari-
ables, methods, and classes.

e Understandable output - Your program should indicate its input as well as its output in a
clear and readable manner. Remember, the output from your program is the only indication
that it works!

The remaining of your grade is based on meeting the specifications of the assignment. If you do
not get your program correctly running, for partial credit you may generate output that identifies
which part of your program is correctly working. This output must also be clearly understandable
or no credit will be given!

You should create a file called README that contains your name, the amount of time the project
took, and anyone you received help from.

Submit Part I using Eclipse and Ambient under project2partl and submit part II using Eclipse
and Ambient under project2part2.

Programs should be submitted by the due date. You should read your mail regularly after submit-
ting your project in case the grader cannot compile your program.

LATE POLICY

Programs not submitted by the due date are penalized 10% up to three days late and 20% if four
or more days late (Sunday does not count as a late day). You must meet with Prof. Rodger if your
program is not turned in one week after the deadline.



LR(1) Parse Table - this is the table you will use, in file parsedata

L Jz[iJb[t]:ifec[v m[h o[l |r[d]n[s[e]|]w][S$]
s2

acc

s3
s4

sH

S8 s9 | s10 | s11 | s12 | s13
sl4 s8 s9 | s10 | s11 | s12 | s13
s16

s17
s18

OO0 || =W NH+O

—_
]

s19

—_
—_

s20
s21

—_
[\

—
w

s22

,_.
=

rl

—_
ot

s23
r2 r2 r2 | r2 r2 r2 r2 r2

—_
D

—_
EN

s24
s25
s26
s27 r7
r9

—_
oo

—_
Nej

[\~
[es}

[\
—_

N
[\)

S8 s9 | s10 | s11 | s12 | s13
r3 r3 r3 | r3 r3 r3 r3 r3

[\)
w

)
=~

s29
s30

[\V)
ot

[\V)
(@]

r6
r8

[\
~J

[\
co

s8 s9 | s10 | s11 | s12 | s13 | s31

[\
Nej

s33 | s34 | s35 | s36
s33 | s34 | s35 | s36

w
s}

w
—

rl0
r4
rll
rl2
rl3
rl4
rd

w
[\

w
w

w
=~

w
ot

w
D

w
3




LR(1) Parse Table (continued)
| [P]L[S]|D]
1

15

OO0 || =W NH+O
D
\]

—_
]

—_
—_

—_
[\

—
w

,_.
=

—_
ot

—_
(@]

—_
EN

—_
oo

—_
NeJ

[\~
[es}

[\
—_

N
[\)

28 | 7

[\)
w

)
=~

[\V)
ot

[\V)
(@]

[\
~J

[\
co

15

[\
Nej

32
37

w
s}

w
—

w
[\

[OM]
w

w
=~

w
ot

w
D

w
3

The next page shows a DFA and corresponding parse table for this grammar generated with JFLAP.
The rows and columns in this table are organized in different order then the previous table that
you will use.



