
CPS 140 Project 3 Spring 2012

Project Due: Thursday, April 19, 11:59pm
30 points

The purpose of this assignment is to write an interpretor for the MOUSECAT programming lan-
guage (see the project 1 and project 2 handouts for a description of the tokens and the grammar
of the MOUSECAT programming language). Your program will read in a data file containing a
MOUSECAT program, and if it is a syntactically correct MOUSECAT program, then you will
interpret the program and graphically interpret cats, mice, holes and movement of cats and mice.

DESCRIPTION OF YOUR PROGRAM

Given a sample MOUSECAT program, your task is to 1) scan the program and identify all its parts
(or tokens) 2) parse the program using an LR parser and identify if it is syntactically correct 3)
construct a syntax tree and 4) “run” the MOUSECAT program by traversing the syntax tree.

Part 1 - The Scanner

This was done in project 1.

Part 2 - The Parser

This was done in project 2.

Part 3 - The Syntax Tree

For each MOUSECAT program, you will construct a syntax tree that represents the semantics of
the MOUSECAT program. The tree can be built as the MOUSECAT program is parsed.

Whenever structure is recognized in a MOUSECAT program, the parts of the structure can be
put together in the form of a syntax tree. Structure is recognized when a reduce operation is
encountered. For example, when “move bobo 4” is reduced to “Statement”, a syntax tree can
represent the fact that the cat bobo should move 4 spaces in the current direction. We will create
a node of type “move”. This node should contain a pointer to “bobo” in the symbol table.

move

4bobo

For another example, when “List Statement ;” is reduced to “List”, there already exists a syntax
tree for “List” and a syntax tree for “Statement”, and they are joined together into one syntax tree
for the new “List” by creating a node of type “seq” (indicating a sequence of statements) containing
pointers to the two syntax trees.

In order to keep track of the syntax trees, a stack called STstack will contain a reference to
the current syntax trees and to variables in the symbol table. Whenever a reduce operation is
encountered whose rewrite rule contains two nonterminals on the right hand side (representing
two syntax trees that have previously been calculated), the top two references on the STstack are
popped and joined together in a new syntax tree. Then the reference to this new syntax tree is
placed on the stack. Whenever a reduce operation is encountered whose rewrite rule contains one

1



forfor
List

syn. tree

Statement

syn. tree

seq

nonterminal on the right hand side, the top reference on the STstack is popped and then pushed
back onto the stack. Since this results in the STstack remaining the same, the stack does not
need to be manipulated in this case. Whenever a reduce operation is encountered whose rewrite
rule contains just terminals on the right hand side, a syntax tree node is created, references to the
nonterminal’s value in the symbol table are popped off of the STstack and placed into the syntax
tree node, and then the reference to the syntax tree node is pushed onto the STstack. When a
MOUSECAT program is recognized as valid, there will be one reference on the STstack. This
reference points to the root of a syntax tree that represents the program. NOTE: the STstack is
not the same stack the LR parser uses, but the two stacks do operate in parallel.

Types of nodes for syntax trees:

• size - size i j begin <list> halt - This type of node represents the beginning of a MOUSECAT
program and has four parts. The first part tells the type of the node, size, the second and
third parts are references to the integers i and j in the symbol table, and the fourth part is a
reference to a list of statements, either a seq node if there are multiple statements, or a single
statement node.

• cat v i j d - This type of node has five parts. The first part tells the type of the node, cat, the
second part is a reference to v in the symbol table, the third and fourth parts are references
to i and j in the symbol table, and the fifth part d is the direction.

• mouse v i j d - This type of node is a mouse node with five parts and is similar to the cat
node.

• hole i j - This type of node has three parts. The first part tells the type of the node, hole,
and the second and third parts are references to i and j in the symbol table.

• sequence - This type of node has three parts. The first part identifies the type of node,
seq. The second and third parts are references to syntax trees, where those statements in
the second part’s syntax tree should be executed before those statements in the third part’s
syntax tree.

2



• move v i - This type of node has three parts. The first part tells the type of the node, move,
the second part points to the variable v in the symbol table, and the third part points to the
integer i in the symbol table.

• clockwise v - This type of node has two parts. The first part tells the type of the node,
clockwise, and the second part points to the variable v in the symbol table.

• repeat i <stmts> end - This type of node has three parts. The first part identifies the node
as a repeat node, The second part is a reference to the integer i in the symbol table, and the
third part is a reference to a syntax tree that represents the body of the do statement. The
meaning of the repeat statement is to execute the statements in the body i times.

Consider the following MOUSECAT program.

// program 1
size 30 40
begin

cat char 20 21 east ;
move char 4 ;

halt

This MOUSECAT program can be derived by applying the following production rules (using the
first letter of each variable):

RULES DERIVATION

P → size int int begin L halt size 30 40 begin L halt
L → L S ; size 30 40 begin L S ; halt
S → move var int size 30 40 begin L move char 4 ; halt
L → S ; size 30 40 begin S ; move char 4 ; halt
S → cat var int int D size 30 40 begin cat char 20 21 D ; move char 4 ; halt
D → east size 30 40 begin cat char 20 21 east ; move char 4 ; halt

If we apply the rules in the reverse order (the order an LR parser would find them) we can construct
the syntax tree for this MOUSECAT program.

D → east

D

east

In this case, the reference to the node in the symbol table containing east is pushed on the STstack.

3



S → cat var int int D

S

cat

char
20

21

east

Here char, 20 and 21 would have already been shifted onto the STstack, and the direction node D
is already on the STstack pointing to east. These 4 items are popped off the STstack, a cat node
is made and the cat node is pushed onto the STstack.

L → S ;

cat

char
20

21

east

L

This is interpreted as the top of the STstack is popped and then pushed, or you can do nothing
since the stack doesn’t change in this case.

S → move var int

cat

char
20

21

east

L

move

char 4

S

The char and 4 have already been pushed onto the STstack. They are popped off, a move node is
created and pushed onto the STstack.

4



L → L S ;

cat

char
20

21

east

move

char 4

seq

L

The top two items are popped off the STstack and joined together in a sequence node, which is
then pushed on the STstack.

P → size int int begin L halt

cat

char
20

21

east

move

char 4

seq

size
P

30 40

The two ints have been shifted onto the top of the STstack. Three items are popped off the stack
and joined together in a size node, and then pushed back onto the stack, where it should be the
only thing on the stack.

Part 4 - Execution of MOUSECAT programs

If the parser identifies that the MOUSECAT program is syntactically correct, then one can walk
through the syntax tree and “run” the MOUSECAT program. When running a program, the

5



current value of variables are stored in the symbol table. In project 1, each variable in the symbol
table had an integer value associated with it that was initially set to 0.

In the example above, one would traverse the syntax tree and 1) use graphic commands to create
an initial window of size 30 by 40 2) create a cat at position (20, 21) headed in the direction east,
3) show the cat moving (cell by cell) 4 positions to the east.

Refer to project 1 that shows a graphic diagram showing the coordinates for the grid and a sample
animation picture.

INPUT:

The input is a MOUSECAT program. You may assume the tokens for MOUSECAT programs are
all valid. The format of the data file is the same as it was in projects 1 and 2.

OUTPUT:

Indicate whether the MOUSECAT program is syntactically correct or not. If it is syntactically cor-
rect, then run the MOUSECAT program and and produce a graphical simulation of the MOUSE-
CAT program. If the MOUSECAT program is not syntactically correct, your program should
display a text message indicating this, such as “Not syntactically correct.”

Your program should follow the rules listed below, generating error messages in the animation
when rules aren’t followed and if multiple items are allowed on the same position, displaying the
appropriate critter for that position.

RULES for Cat and Mice

• A mouse can hide in a hole, so display the hole if there is a mouse on the same position.

• Cats can walk over holes, but not go in them, so in this case display the cat until the cat is
gone, then display the hole again.

• If a cat and mouse are on the same square (the mouse is not in a hole), then display the cat
and assume the cat has eaten the mouse. You can remove the mouse. Any other statements
that refer to the mouse are invalid, and an error message should flash in the animation.

• Two cats cannot be on the same square. This is an error. Remove the cat that entered the
position last and keep the program running. It is then an error to refer to the cat that was
removed. Flash an error message if this happens.

• Multiple mice can be on the same square if the square is a hole. Multiple mice cannot be on
the same square otherwise. In that case, remove the mouse that entered the position last and
flash error messages for any later statements that refer to that mouse.

• Display (flash) an error message in the window if an object (cat, mouse or hole) has coordinates
outside of the window.

Graphics

The focus of this assignment is to learn about how parsing works. Graphics added are an extra
bells and whistle.

AT THE MINIMUM, you should store the grid in a 2d array with different symbols representing
the mouse, the path of the mouse, the cats, the path of the cats and the hole. Then print out all

6



error messages and the 2d array after the simulation is complete. (note you must indicate the path
the mouse and cat moved with appropriate symbols). Each symbol used and what it represents
should be described in your README file.

EXTRA CREDIT (5 pts)

EXTRA CREDIT: Create an animation of the program with simple graphical objects for the cats,
mice and holes such as blue circle, red square, etc. Here errors should be displayed in the graphics.

THE PROGRAM AND ITS SUBMISSION

Your program should be written in Java and use Eclipse.

Your program will be graded on style as well as content. Style will count for 20% of your grade.

Appropriate style for this course includes:

• Modularity - Your program should be divided into classes. Comments should describe each
part of the classes.

• Liberal use of comments - In addition to the comment for each class part, each nontrivial
section of code (for example a loop) should have a comment describing its purpose. Comments
should not merely echo the code.

• Readability - Your program should use the indentation and spacing appropriately to make it
easily readable. Your comments should be clearly distinguishable from the code.

• Appropriate variable names - Give appropriate names that describe their function for vari-
ables, methods and classes.

• Understandable output - Your program should indicate its input as well as its output in a
clear and readable manner. Remember, the output from your program is the only indication
that it works!

The remaining part of your grade is based on meeting the specifications of the assignment. If you do
not get your program correctly running, for partial credit you may generate output that identifies
which part (functions) of your program are correctly working. This output must also be clearly
understandable or no credit will be given!

You should create a file called README that contains your name, the amount of time the project
took, and anyone you received help from.

Programs should be submitted by the due date. You should read your mail regularly after submit-
ting your project in case the grader cannot compile your program.

LATE PENALTIES

Late programs are subject to a 10% penalty. No late programs will be accepted after Monday,
April 23 8am!

7


