CPS 140 - Mathematical Foundations of CS Dr. S. Rodger Section: Recursively Enumerable Languages (handout) Read Chapter 11 in Linz. **Definition**: A language L is recursively enumerable if there exists a TM M such that L=L(M). **Definition**: A language L is *recursive* if there exists a TM M such that L=L(M) and M halts on every $w \in \Sigma^+$. ## Enumeration procedure for recursive languages To enumerate all $w \in \Sigma^+$ in a recursive language L: - Let M be a TM that recognizes L, L = L(M). - Construct 2-tape TM M' Tape 1 will enumerate the strings in Σ^+ Tape 2 will enumerate the strings in L. - On tape 1 generate the next string v in Σ^+ - simulate M on v if M accepts v, then write v on tape 2. # Enumeration procedure for recursively enumerable languages To enumerate all $w \in \Sigma^+$ in a recursively enumerable language L: Repeat forever - Generate next string (Suppose k strings have been generated: $w_1, w_2, ..., w_k$) - Run M for one step on w_k Run M for two steps on w_{k-1} Run M for k steps on w_1 . If any of the strings are accepted then write them to tape 2. **Theorem** Let S be an infinite countable set. Its powerset 2^S is not countable. # **Proof** - Diagonalization • S is countable, so it's elements can be enumerated. $$S = \{s_1, s_2, s_3, s_4, s_5, s_6 \ldots\}$$ An element $t \in 2^S$ can be represented by a sequence of 0's and 1's such that the *i*th position in *t* is 1 if s_i is in t, 0 if s_i is not in t. Example, $\{s_2, s_3, s_5\}$ represented by Example, set containing every other element from S, starting with s_1 is $\{s_1, s_3, s_5, s_7, \ldots\}$ represented by Suppose 2^S countable. Then we can emunerate all its elements: $t_1, t_2, ...$ | | s_1 | s_2 | s_3 | s_4 | s_5 | s_6 | s_7 | | |-------|-------|-------|-------|-------|-------|-------|-------|--| | t_1 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | | | t_2 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | | | t_3 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | | | t_4 | 1 | 0 | 1 | 0 | 1 | 1 | 0 | | | t_5 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | | t_6 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | | | t_7 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | | | | | | | | | | | | | | ' | | | | | | | | **Theorem** For any nonempty Σ , there exist languages that are not recursively enumerable. # **Proof**: • A language is a subset of Σ^* . The set of all languages over Σ is **Theorem** There exists a recursively enumerable language L such that \bar{L} is not recursively enumerable. # **Proof:** • Let $\Sigma = \{a\}$ Enumerate all TM's over Σ : | | a | aa | aaa | aaaa | aaaaa | ••• | |-------------------|---|----|-----|------|-------|-----| | $L(M_1)$ | 0 | 1 | 1 | 0 | 1 | | | $L(M_2)$ | 1 | 0 | 1 | 0 | 1 | | | $L(M_3)$ | 0 | 0 | 1 | 1 | 0 | | | $L(M_4)$ | 1 | 1 | 0 | 1 | 1 | | | $L(M_4)$ $L(M_5)$ | 0 | 0 | 0 | 1 | 0 | | | | | | | | | | The next two theorems in conjunction with the previous theorem will show that there are some languages that are recursively enumerable, but not recursive. **Theorem** If languages L and \bar{L} are both RE, then L is recursive. #### **Proof**: There exists an M₁ such that M₁ can enumerate all elements in L. There exists an M₂ such that M₂ can enumerate all elements in L̄. To determine if a string w is in L or not in L perform the following algorithm: **Theorem:** If L is recursive, then \bar{L} is recursive. #### **Proof**: • L is recursive, then there exists a TM M such that M can determine if w is in L or w is not in L. M outputs a 1 if a string w is in L, and outputs a 0 if a string w is not in L. Construct TM M' that does the following. M' first simulates TM M. If TM M halts with a 1, then M' erases the 1 and writes a 0. If TM M halts with a 0, then M' erases the 0 and writes a 1. ## Hierarchy of Languages: **Definition** A grammar G=(V,T,S,P) is *unrestricted* if all productions are of the form $u \rightarrow v$ where $u \in (V \cup T)^+$ and $v \in (V \cup T)^*$ # Example: Let $G = (\{S,A,X\},\{a,b\},S,P), P =$ $\begin{array}{l} S \rightarrow bAaaX \\ bAa \rightarrow abA \\ AX \rightarrow \lambda \end{array}$ **Example** Find an unrestricted grammar G s.t. $L(G) = \{a^n b^n c^n | n > 0\}$ G=(V,T,S,P) $V = \{S,A,B,D,E,X\}$ $T=\{a,b,c\}$ P= - 1) $S \to AX$ - 2) $A \rightarrow aAbc$ - 3) $A \rightarrow aBbc$ - 4) $Bb \rightarrow bB$ - 5) Bc \rightarrow D - 6) $Dc \rightarrow cD$ - 7) $Db \rightarrow bD$ - 8) DX \rightarrow EXc There are some rules missing in the grammar. To derive string anabbbccc, use productions 1,2 and 3 to generate a string that has the correct number of a's b's and c's. The a's will all be together, but the b's and c's will be intertwined. $S \Rightarrow AX \Rightarrow aAbcX \Rightarrow aaAbcbcX \Rightarrow aaaBbcbcbcX$ **Theorem** If G is an unrestricted grammar, then L(G) is recursively enumerable. ## **Proof:** • List all strings that can be derived in one step. List all strings that can be derived in two steps. **Theorem** If L is recursively enumerable, then there exists an unrestricted grammar G such that L=L(G). ### **Proof:** • L is recursively enumerable. \Rightarrow there exists a TM M such that L(M)=L. $$\mathbf{M} = (Q, \Sigma, \Gamma, \delta, q_0, B, F)$$ $$q_0w \stackrel{*}{\vdash} x_1q_fx_2$$ for some $q_f \in \mathbb{F}, x_1, x_2 \in \Gamma^*$ Construct an unrestricted grammar G s.t. L(G)=L(M). $$S \stackrel{*}{\Rightarrow} w$$ Three steps - 1. $S \stackrel{*}{\Rightarrow} B \dots B \# x q_f y B \dots B$ with $x,y \in \Gamma^*$ for every possible combination - 2. $B \dots B \# x q_f y B \dots B \stackrel{*}{\Rightarrow} B \dots B \# q_0 w B \dots B$ - 3. $B \dots B \# q_0 w B \dots B \stackrel{*}{\Rightarrow} w$ | Definition A grammar | G is | $context\text{-}sensitive \ \text{if}$ | all | productions | are | of the | ${\rm form}$ | |-----------------------------|------|--|-----|-------------|-----|--------|--------------| |-----------------------------|------|--|-----|-------------|-----|--------|--------------| $$x \to y$$ where $x, y \in (V \cup T)^+$ and $|x| \leq |y|$ **Definition** L is context-sensitive (CSL) if there exists a context-sensitive grammar G such that L=L(G) or L=L(G) $\cup \{\lambda\}$. **Theorem** For every CSL L not including λ , \exists an LBA M s.t. L=L(M). **Theorem** If L is accepted by an LBA M, then \exists CSG G s.t. L(M)=L(G). **Theorem** Every context-sensitive language L is recursive. **Theorem** There exists a recursive language that is not CSL.