${\rm CPS}~140$ - Mathematical Foundations of ${\rm CS}$

Dr. S. Rodger

Section: Transforming Grammars (Ch. 6) (handout)

Methods for Transforming Grammars (Read Ch 6 in Linz Book)

We will consider CFL without λ . It would be easy to add λ to any grammar by adding a new start symbol S_0 ,

$$S_0 \to S \mid \lambda$$

Theorem (Substitution) Let G be a CFG. Suppose G contains

$$A \rightarrow x_1 B x_2$$

where A and B are different variables, and B has the productions

$$B \to y_1 | y_2 | \dots | y_n$$

Then can construct G' from G by deleting

$$A \to x_1 B x_2$$

from P and adding to it

$$A \to x_1 y_1 x_2 |x_1 y_2 x_2| \dots |x_1 y_n x_2|$$

Then, L(G)=L(G').

Example:

$$S \rightarrow aBa$$
 becomes $B \rightarrow aS \mid a$

Definition: A production of the form $A \to Ax$, $A \in V$, $x \in (V \cup T)^*$ is *left recursive*.

Example Previous expression grammar was left recursive.

$$\begin{array}{l} E \rightarrow E + T \mid T \\ T \rightarrow T * F \mid F \\ F \rightarrow I \mid (E) \\ I \rightarrow a \mid b \end{array}$$

A top-down parser would want to derive the leftmost terminal as soon as possible. But in the left recursive grammar above, in order to derive a sentential form that has the leftmost terminal, we have to derive a sentential form that has other terminals in it.

Derivation of a+b+a+a is:

$$E \Rightarrow E+T \Rightarrow E+T+T \Rightarrow E+T+T+T \stackrel{*}{\Rightarrow} a+T+T+T$$

We will eliminate the left recursion so that we can derive a sentential form with the leftmost terminal and no other terminals.

Theorem (Removing Left recursion) Let G=(V,T,S,P) be a CFG. Divide productions for variable A into left-recursive and non left-recursive productions:

$$A \rightarrow Ax_1 \mid Ax_2 \mid \dots \mid Ax_n$$

 $A \rightarrow y_1 \mid y_2 \mid \dots \mid y_m$

where x_i , y_i are in $(V \cup T)^*$.

Then $G'=(V\cup \{Z\}, T, S, P')$ and P' replaces rules of form above by

$$A \rightarrow y_i | y_i Z, i=1,2,...,m$$

 $Z \rightarrow x_i | x_i Z, i=1,2,...,n$

Example:

$$E \to E+T|T$$
 becomes

$$T \to T*F|F$$
 becomes

Now, Derivation of a+b+a+a is:

Useless productions

$$S \to aB \mid bA$$

$$A \to aA$$

$$\mathrm{B} \to \mathrm{Sa}$$

$$C \rightarrow cBc \mid a$$

What can you say about this grammar?

Theorem (useless productions) Let G be a CFG. Then \exists G' that does not contain any useless variables or productions s.t. L(G)=L(G').

To Remove Useless Productions:

Let
$$G=(V,T,S,P)$$
.

I. Compute $V_1 = \{ \text{Variables that can derive strings of terminals} \}$

- 1. $V_1 = \emptyset$
- 2. Repeat until no more variables added
 - For every A \in V with A $\rightarrow x_1 x_2 \dots x_n$, $x_i \in (T^* \cup V_1)$, add A to V_1
- 3. $P_1 = \text{all productions in } P \text{ with symbols in } (V_1 \cup T)^*$

Then $G_1=(V_1,T,S,P_1)$ has no variables that can't derive strings.

II. Draw Variable Dependency Graph

For $A \to xBy$, draw $A \to B$.

Remove productions for V if there is no path from S to V in the dependency graph. Resulting Grammar G' is s.t. L(G)=L(G') and G' has no useless productions.

Example:

$$S \to aB \mid bA$$

$$A \to aA$$

$$B \to Sa \mid b$$

$$C \rightarrow cBc \mid a$$

$$\mathrm{D} \to \mathrm{bCb}$$

$$E \rightarrow Aa \mid b$$

Theorem (remove λ productions) Let G be a CFG with λ not in L(G). Then \exists a CFG G' having no λ -productions s.t. L(G)=L(G').

To Remove λ -productions

- 1. Let $V_n = \{A \mid \exists \text{ production } A \rightarrow \lambda \}$
- 2. Repeat until no more additions
 - if $B \rightarrow A_1 A_2 \dots A_m$ and $A_i \in V_n$ for all i, then put B in V_n
- 3. Construct G' with productions P' s.t.
 - If $A \to x_1 x_2 \dots x_m \in P$, $m \ge 1$, then put all productions formed when x_j is replaced by λ (for all $x_j \in V_n$) s.t. $|\text{rhs}| \ge 1$ into P'.

Example:

$$S \to Ab$$

$$A \to BCB \mid Aa$$

$$B \to b \mid \lambda$$

$$C \to cC \mid \lambda$$

Definition Unit Production

$$\mathbf{A} \to \mathbf{B}$$

where $A,B \in V$.

Consider removing unit productions:

Suppose we have

$$A \rightarrow B$$
 becomes $B \rightarrow a \mid ab$

But what if we have

 $\mathrm{C} \to \mathrm{A}$

$$\begin{array}{ll} A \to B & \quad \text{becomes} \\ B \to C & \quad \end{array}$$

Theorem (Remove unit productions) Let G=(V,T,S,P) be a CFG without λ -productions. Then \exists CFG G'=(V',T',S,P') that does not have any unit-productions and L(G)=L(G').

To Remove Unit Productions:

- 1. Find for each A, all B s.t. A $\stackrel{*}{\Rightarrow}$ B (Draw a dependency graph)
- 2. Construct G'=(V',T',S,P') by
 - (a) Put all non-unit productions in P'
 - (b) For all $A \stackrel{*}{\Rightarrow} B$ s.t. $B \rightarrow y_1 | y_2 | \dots y_n \in P'$, put $A \rightarrow y_1 | y_2 | \dots y_n \in P'$

Example:

 $S \to AB$

 $A \to B$

 $B \to C \mid Bb$

 $C \rightarrow A \mid c \mid Da$

 $\mathrm{D} \to \mathrm{A}$

Theorem Let L be a CFL that does not contain λ . Then \exists a CFG for L that does not have any useless productions, λ -productions, or unit-productions.

Proof

- 1. Remove λ -productions
- 2. Remove unit-productions
- 3. Remove useless productions

Note order is very important. Removing λ -productions can create unit-productions! QED.

Definition: A CFG is in Chomsky Normal Form (CNF) if all productions are of the form

$$A \to BC$$
 or $A \to a$

where $A,B,C \in V$ and $a \in T$.

Theorem: Any CFG G with λ not in L(G) has an equivalent grammar in CNF.

Proof:

1. Remove λ -productions, unit productions, and useless productions.

2. For every rhs of length > 1, replace each terminal x_i by a new variable C_j and add the production $C_j \to x_i$.

3. Replace every rhs of length > 2 by a series of productions, each with rhs of length 2. QED.

Example:

$$S \to CBcd$$

$$\begin{array}{l} {\rm B} \rightarrow {\rm b} \\ {\rm C} \rightarrow {\rm Cc} \mid {\rm e} \end{array}$$

Definition: A CFG is in Greibach normal form (GNF) if all productions have the form

$$A \rightarrow ax$$

where $a \in T$ and $x \in V^*$

Theorem For every CFG G with λ not in L(G), \exists a grammar in GNF.

Proof:

- 1. Rewrite grammar in CNF.
- 2. Relabel Variables $A_1, A_2, \ldots A_n$
- 3. Eliminate left recursion and use substitution to get all productions into the form:

$$\begin{array}{l} A_i \rightarrow A_j x_j, \ j > i \\ Z_i \rightarrow A_j x_j, \ j \leq n \\ A_i \rightarrow \mathbf{a} x_i \end{array}$$

where $a \in T$, $x_i \in V^*$, and Z_i are new variables introduced for left recursion.

4. All productions with A_n are in the correct form, $A_n \to ax_n$. Use these productions as substitutions to get A_{n-1} productions in the correct form. Repeat with A_{n-2} , A_{n-3} , etc until all productions are in the correct form.