CPS 140 - Mathematical Foundations of CS
Dr. S. Rodger
Section: Transforming Grammars (Ch. 6) (handout)

Methods for Transforming Grammars (Read Ch 6 in Linz Book)

We will consider CFL without A. It would be easy to add A to any grammar by adding a new start symbol
SO?

So—>S|/\

Theorem (Substitution) Let G be a CFG. Suppose G contains

A— z1Bxo

where A and B are different variables, and B has the productions

B = yily2| .- yn

Then can construct G’ from G by deleting

A — 21Bag

from P and adding to it

A — zyy1xo|riyers|. .. |T1YRT2

Then, L(G)=L(&).
Example:

S — aBa becomes
B—aS|a

Definition: A production of the form A — Ax, A€V, xe(V U T)* is left recursive.

Example Previous expression grammar was left recursive.

E—-E+T|T
T — T«F | F
F—1]|(E)
I—-al|b

A top-down parser would want to derive the leftmost terminal as soon as possible. But in the left recursive
grammar above, in order to derive a sentential form that has the leftmost terminal, we have to derive a
sentential form that has other terminals in it.

Derivation of a+b-+a+a is:
E = E4+T = E+T+T = E4+T+T+T = a+T+T+T

We will eliminate the left recursion so that we can derive a sentential form with the leftmost terminal and
no other terminals.

Theorem (Removing Left recursion) Let G=(V,T,S,P) be a CFG. Divide productions for variable A into
left-recursive and non left-recursive productions:

A= Axy |Azs | ... | Az,
A= wilyal- - [ym

where z;, y; are in (V U T)*.

Then G'=(VU{Z}, T, S, P’) and P’ replaces rules of form above by

A = yilyiZ,1=1,2,...m
Z — x|z Z,1=12,...n

Example:
E — E4T|T becomes
T — Tx*F|F becomes

Now, Derivation of a+b+a+a is:

Useless productions

S — aB | bA
A — aA
B — Sa
C—=cBcla

What can you say about this grammar?

Theorem (useless productions) Let G be a CFG. Then 3 G’ that does not contain any useless variables or
productions s.t. L(G)=L(G").

To Remove Useless Productions:
Let G=(V,T,S,P).

I. Compute Vy={Variables that can derive strings of terminals}

1. V=0
2. Repeat until no more variables added
e For every A€V with A—zq2s ... 2y, z; €(T* U Vy), add A to V;

3. Py = all productions in P with symbols in (V; U T)*

Then G;=(V1,T,S,P1) has no variables that can’t derive strings.
II. Draw Variable Dependency Graph
For A — xBy, draw A—B.

Remove productions for V if there is no path from S to V in the dependency graph. Resulting Grammar G’
is s.t. L(G)=L(G’) and G’ has no useless productions.

Example:

S — aB | bA
A — aA
B—Salb
C—cBc|a
D — bCb
E— Aa|b

Theorem (remove A productions) Let G be a CFG with A not in L(G). Then 3 a CFG G’ having no
A-productions s.t. L(G)=L(G).

To Remove A-productions

1. Let V;, = {A | 3 production A—\ }
2. Repeat until no more additions
e if B—»A1A5...A,, and A;e V, for all ¢, then put B in V,

3. Construct G’ with productions P’ s.t.

o If A~ x1x9... 2, €P, m > 1, then put all productions formed when z; is replaced by A (for all
xj € V) s.t. |rhs| > 1 into P’

Example:

S — Ab

A — BCB | Aa
B—bl|A
C—cClA

Definition Unit Production
A—B

where A,B €V.
Consider removing unit productions:
Suppose we have

A—B becomes
B —a]ab

But what if we have

A—+B becomes
B—C
C— A

Theorem (Remove unit productions) Let G=(V,T,S,P) be a CFG without A-productions. Then 3 CFG
G’=(V’,T’,S,P’) that does not have any unit-productions and L(G)=L(G’).

To Remove Unit Productions:

1. Find for each A, all B s.t. A =B (Draw a dependency graph)
2. Construct G’=(V’,T°,S,P’) by

(a) Put all non-unit productions in P’

(b) For all ASB s.t. B=yi|yz|...yn € P, put A=yilya| ... yn € P

Example:

S — AB
A—B
B—C|Bb
C—Alc|Da
D— A

Theorem Let L be a CFL that does not contain A. Then 3 a CFG for L that does not have any useless
productions, A\-productions, or unit-productions.

Proof

1. Remove A-productions
2. Remove unit-productions

3. Remove useless productions

Note order is very important. Removing A-productions can create unit-productions! QED.

Definition: A CFG is in Chomsky Normal Form (CNF) if all productions are of the form

A—-BC orA —a

where A,B,CeV and acT.
Theorem: Any CFG G with A not in L(G) has an equivalent grammar in CNF.

Proof:

1. Remove A-productions, unit productions, and useless productions.

2. For every rhs of length > 1, replace each terminal ; by a new variable C; and add the production
Cj — Tj.

3. Replace every rhs of length > 2 by a series of productions, each with rhs of length 2. QED.

Example:

S — CBcd
B—b
C—Ccle

Definition: A CFG is in Greibach normal form (GNF) if all productions have the form

A— ax

where a€T and xeV*
Theorem For every CFG G with A not in L(G), 3 a grammar in GNF.

Proof:

1. Rewrite grammar in CNF.
2. Relabel Variables A1, Ao, ... A,
3. Eliminate left recursion and use substitution to get all productions into the form:
A, — Aj(Ej, J>1
Z; — Ajl‘j, i1<n
A; — ax;
where acT, x; €V*, and Z; are new variables introduced for left recursion.

4. All productions with A,, are in the correct form, A, — ax,. Use these productions as substitutions
to get A,,_1 productions in the correct form. Repeat with A, o, A, _3, etc until all productions are
in the correct form.

