Section: Transforming grammars

(Ch. 6)

Methods for Transforming Grammars

We will consider CFL without \. It
would be easy to add A\ to any
grammar by adding a new start
symbol Sg,

So%S‘)\

Theorem (Substitution) Let G be a
CFG. Suppose G contains

A — x1Bxo

where A and B are different variables,
and B has the productions

B — yily] ... |yn

Then can construct G’ from G by
deleting

A — x1Bxo
from P and adding to it
A — mywo|T1yoxsl . - |T1YRTo

Then, L(G)=L(G").

Example:

S — aBa becomes
B —»aS|a

Definition: A production of the form
A — Ax, AcV, xe(V U T)" is left

recursive.

Example Previous expression
grammar was left recursive.

E - E+T|T
T — T+F | F
F—-1](E)
I -al|b

Derivation of a+b-+a-a is:

E=FE+T = E+T+T = E4+T+T4+T
X a+T+T+T

Theorem (Removing Left recursion)
Let G=(V,T,S,P) be a CFG. Divide
productions for variable A into
left-recursive and non left-recursive
productions:

A — Az | Az | ... | Axy
A = yilya| - lym

where z;, y; are in (V U T)*,

Then G’=(VU{Z}, T, S, P’) and P’
replaces rules of form above by

A — yi]in, i:1,2,. .., IMN
7 — $i|$@'z, i=1,2,...,n

Example:
E - E4T|T becomes

T — T«F|F becomes

Now, Derivation of a+b-+a-a is:

Useless productions

S — aB | bA
A — aA
B — Sa
C - cBc|a

What can you say about this
grammar?

Theorem (useless productions) Let G
be a CFG. Then 4 G’ that does not

contain any useless variables or
productions s.t. L(G)=L(G’).

To Remove Useless Productions:
Let G=(V,T,S,P).

I. Compute V{={Variables that can
derive strings of terminals}

1. V=0

2. Repeat until no more variables

added

e For every AcV with
A—xix9.. .20, x; €(T* U V), add
A to Vy

3. P; = all productions in P with
symbols in (V{ U T)*

Then G;=(V,T,S,P;) has no variables
that can’t derive strings.

II. Draw Variable Dependency Graph
For A — xBy, draw A—B.

Remove productions for V if there is
no path from S to V in the
dependency graph. Resulting
Grammar G’ is s.t. L(G)=L(G’) and
G’ has no useless productions.

Example:

S — aB | bA
A — aA
B —Sa|b
C - cBc|a
D — bCb

E — Aa|b

10

Theorem (remove)\ productions) Let
G be a CFG with A not in L(G). Then
4 a CFG G’ having no A-productions
s.t. L(G)=L(G&’).

To Remove A-productions

1. Let V,, = {A | 3 production A—)\ }

2. Repeat until no more additions

oif B—+-A{A>...A,, and A;e V, for
all 7, then put B in V),

3. Construct (G’ with productions P’
S.t.

olf A~ zyxo...2,, €P, m > 1, then
put all productions formed when
r; is replaced by A (for all
r; € Vi) s.t. |rhs| > 1 into P’.

11

Example:

S — Ab

A — BCB | Aa
B—b| A\
C—>cC| A

12

Definition Unit Production
A — B

where A,.B €V.

Consider removing unit productions:

Suppose we have

A - B becomes
B — a | ab

But what if we have

A —- B becomes
B - C
C — A

13

Theorem (Remove unit productions)
Let G=(V,T,S,P) be a CFG without
A-productions. Then 4 CFG
G’'=(V’,T°,S,P’) that does not have
any unit-productions and

L(G)=L(G).

To Remove Unit Productions:

1. Find for each A, all B s.t. A =B
(Draw a dependency graph)

2. Construct G’=(V’,T°,S,P’) by
(a) Put all non-unit productions in
P?
(b) For all ASB s.t. B—=y|ys|...yn €
P’, put A—yilyo|...yn € P’

14

Example:

S — AB
A — B

B - C | Bb
C—> A|c|Da
D— A

15

Theorem Let L be a CFL that does
not contain A\. Then 4 a CFG for L
that does not have any useless
productions, A-productions, or
unit-productions.

Proof

1. Remove A\-productions
2. Remove unit-productions

3. Remove useless productions

Note order is very important.
Removing A-productions can create
unit-productions! QED.

16

Definition: A CFG is in Chomsky
Normal Form (CNF) if all
productions are of the form

A —-BC or A — a

where A,B,CeV and acT.

Theorem: Any CFG G with)\ not in
L(G) has an equivalent grammar in
CNF.

Proof:

1. Remove A-productions, unit
productions, and useless
productions.

2. For every rhs of length > 1, replace
each terminal r; by a new variable
C; and add the production C; — ;.

3. Replace every rhs of length > 2 by
a series of productions, each with
rhs of length 2. QED.

17

Example:

S — CBcd
B—Db
C - Ccle

18

Definition: A CFG is in Greibach
normal form (GNF) if all productions
have the form

A— ax

where acT and xeV*™

Theorem For every CFG G with A\ not
in L(G), 3 a grammar in GNF.

Proof:

1. Rewrite grammar in CNF.
2. Relabel Variables A{, Ao, ... Ay

19

3. Eliminate left recursion and use
substitution to get all productions
into the form:

A — ijj, 7 >1
Ai — ax;

where acT, r; V", and Z; are new
variables introduced for left
recursion.

4. All productions with A,, are in the
correct form, A, — az,. Use these
productions as substitutions to get
A, _1 productions in the correct
form. Repeat with A, -, A, _3, etc
until all productions are in the
correct form.

20

