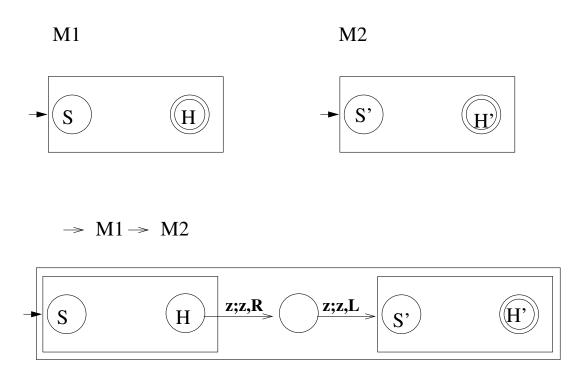
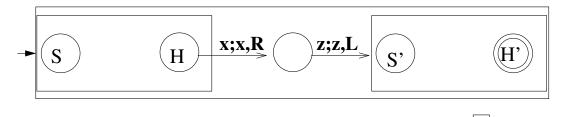
Section: Turing Machines - Building Blocks

- 1. Given Turing Machines M1 and M2 Notation for
 - Run M1
 - Run M2



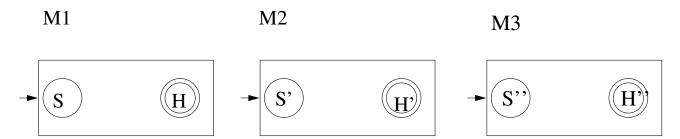
z represents any symbol in

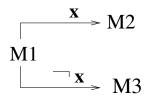
2. Given Turing Machines M1 and M2

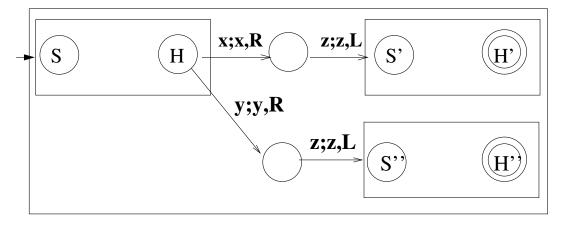


z represents any symbol in x is an element of

3. Given Turing Machines M1, M2, and M3







x is an element of
y is any element except x from
z is any element from

More Notation for Simplifying Turing Machines

Suppose $\Gamma = \{a,b,c,B\}$

z is any symbol in Γ

x is a specific symbol from Γ

- 1. s start
- 2. R move right

3. L - move left

4. x - write x (and don't move)

5. R_a - move right until you see an a

6. L_a - move left until you see an a

7. $R_{\neg a}$ - move right until you see anything that is not an a

8. $L_{\neg a}$ - move left until you see anything that is not an a

- 9. h halt in a final state
- **10.** $\stackrel{a,b}{\rightarrow}$ $\stackrel{w}{\rightarrow}$

If the current symbol is a or b, let w represent the current symbol.

Example

Assume input string $w \in \Sigma^+$, $\Sigma = \{a, b\}$.

If |w| is odd, then write a b at the end of the string. The tape head should finish pointing at the leftmost symbol of w.

input: bab, output: babb

input: ba, output: ba

$$s \rightarrow R \xrightarrow{\neg B} R \xrightarrow{\neg B}$$

$$B \downarrow \qquad \downarrow B$$

$$b \rightarrow L R h$$

$$B \downarrow \qquad B$$

What is the running time?

Example

Assume input string $w \in \Sigma^+$, $\Sigma = \{a, b\}$, |w| > 0

For each a in the string, append a b to the end of the string.

input: abbabb, output: abbabbbb

The tape head should finish pointing at the leftmost symbol of w.

Turing's Thesis Any computation that can be carried out by a mechanical means can be performed by a TM.

Definition: An algorithm for a function $f:D\rightarrow R$ is a TM M, which given input $d\in D$, halts with answer $f(d)\in R$.

Example: f(x+y) = x+y, x and y unary numbers.

$$\uparrow$$

Example: Copy a String, $f(\mathbf{w}) = \mathbf{w}0\mathbf{w}$, $\mathbf{w} \in \Sigma^*$, $\Sigma = \{a, b, c\}$

Denoted by C

start with: abac

 \uparrow

end with: abac0abac

 \uparrow

Algorithm:

- Write a 0 at end of string
- For each symbol in string
 - -make a copy of the symbol

Example: Shift the string that is to the left of the tape head to the right, denoted by S_R (shift right)

Below, "ba" is to the left of the tape head, so shift "ba" to the right.

start with: aaBbabca

 \uparrow

end with: aaBBbaca

 \uparrow

Algorithm:

- remember symbol to the right and erase it
- for each symbol to the left do
 - -shift the symbol one cell to the right
- replace first symbol erased
- move tape head to appropriate position

s R
$$\xrightarrow{a,b,c,B}$$
 \xrightarrow{v} 0 \xrightarrow{L} B L $\xrightarrow{a,b,c}$ \xrightarrow{w} B R w L \xrightarrow{B} $\xrightarrow{R_0}$ v L h

Example: Shift the string that is to the right of tape head to the left, denote by S_L (shift left)

start with: babcaBba

 \uparrow

end with: bacaBBba

 \uparrow

(similar to S_R)

s L
$$\xrightarrow{a,b,c,B}$$
 \xrightarrow{v} 0 \xrightarrow{R} B R $\xrightarrow{a,b,c}$ \xrightarrow{w} B L w R \xrightarrow{B} L \xrightarrow{u} B L u R u R

Example: Add unary numbers
This time use shift.

Example: Multiply two unary numbers, f(x*y)=x*y, x and y unary numbers. Assume x,y>0.

start with: 1111*11

 \uparrow

end with: 11111111

 \uparrow