
CPS 140 - Mathematical Foundations of CS
Dr. S. Rodger

Section: The Structure of a Compiler

1.1 What is a Compiler?

I. Translator

Definition:

program in translator program in
language −→ for −→ language

X X Y

Examples:

Source Object
Language Language Name Example
High Level High Level preprocessor ratfor → f77

m4, cpp
Assembly Machine assembler as

High Level Machine compiler g++, javac
Any executes interpretor BASIC (often)

immediately c shell
apl, lisp, java

• Preprocessor

for i=1 to n do
(stmts)

end for

↓
i = 1
while (i<=n) do

(stmts)
i = i + 1

end while

1

II. Language Processing System

skeletal source program

↓

preprocessor

↓

source program

↓

compiler

↓

target (object) assembly program

↓

assembler

↓

relocatable machine code

↓

loader/link-editor

↓

absolute machine code

III. Compiler

program in program in
high level −→ compiler −→ machine

language X for X language Y

2

1.2 STRUCTURE OF A COMPILER

code
intermediate

code
intermediate

parse trees

tokens

General Overview

Handling

Error

Management

Symbol Table

Object Program

Generation
Code

Optimization
Code

Code Generation

Intermediate

Syntax Analysis

Lexical Analysis

Source Code

3

1.3 PHASES OF COMPILATION

1.3.1 Lexical Analysis (Scanner)

a. Purpose: Read the same program character by character grouping them into atomic units called
“tokens.”

b. Tokens:

• depend on language and compiler writer

• Examples:

reserved words if, for
operators +,−, <,=
constants 0, 4.89
punctuation (, }, [
identifiers sb, ch

• treated as a pair: token.type and token.value

– token type is a (mnemonic) integer

– some tokens have no value

c. Example

if (x <= 0) x = y + z

when put through lexical analyzer produces:

token type value
if 25
(28
id 23 “x”
<= 27

int constant 22 0
) 38
id 23 “x”

= assgnment 4
id 23 “y”
+ 34
id 23 “z”

4

d. How does one build a lexical analyzer?

• from scratch

• lex

e. Preview of Lex

• idea: tokens described by regular expressions

• basic syntax:
regular expression, action

• basic semantics:
if match regular expression, then do action.

• Example:

%%
“if” return(25);
“(“ return(28);
[0-9]+ return(22);

f. Remarks

Besides returning token types and values, the lexical analyzer might

a) print error messages

b) insert identifiers in the symbol table

1.3.2 Syntax Analysis (Parsing)

a. Purpose: Accepts the sequence of tokens generated by the lexical analyzer, checks whether the program
is syntactically correct, and generates a parse tree.

b. Syntax: formally described by a context free grammar.

5

c. Parse Tree

if (x<=0) x = y + z

idid

expr+expr

exprid

rhs=lhs

assg. stmt

constantid

expressionrelopexpression

relation

statement)condition(if

if-statement

statement

<=

Figure 2 is the parse tree for this statement.

d. How does one build a parser?

• from scratch

• using a parser generator such as yacc

1.3.3 Intermediate Code Generator

a. Purpose: Traverse the parse tree, producing simple intermediate code.

b. Three-Address Code:

Instructions:

1. id := id op id
2. goto label
3. if condition goto label

6

Example:

if (x<=0) x = x + z

↓

if (x<=0) goto L1
goto L2

L1: x := y + z
L2:

1.3.4 Intermediate Code Generation

a. Purpose: Transform the intermediate code into “better” code.

b. Examples

1) Rearrangement of Code

if (x<=0) goto L1 if (x>0 goto L2
goto L2 → x = y + z

L1: x = y + z L2:
L2:

2) Redundancy Elimination

a = w + x + y T1 = x + y
→ a = w + T1

b = x + y + z b = T1 + z

3) Strength Reduction

x2 → x ∗ x
expensive→ cheap
operator operator

4) Frequency Reduction

for (i=1; i<n; i=i+1) { T1 = sqrt(26)
x = sqrt(26) → for (i=1; i<n; i=i+1) {
} x = T1

}

7

c. Remarks:

1) Main criteria for optimization is speed.

1.3.5 Code Generation

a. Purpose: Transform intermediate code to machine code (assembler)

b. Example: a = b + c

mov b, R1
add c, R1
mov R1, a

c. Remarks

1) completely machine dependent whereas other phases are not

2) “register allocation” is the most difficult task

• idea - use registers (fast access) to avoid memory use (slow access)

• problem - only a finite number of registers (during intermediate code phase, one assumes an infinite
number)

1.4 Symbol Table

a. Purpose: record information about various objects in the source program

b. Examples

• procedure - no. and type of arguments

• simple variable - type

• array - type, size

c. Use - information is required during

• parsing

• code generation

8

1.5 Error Handler

a. Errors - all errors should be

• detected

• detected correctly

• detected as soon as possible

• reported at the appropriate place and in a helpful manner

b. Purpose

• report errors

• “error recovery” - proceed with processing

c. Note: Errors can occur in each phase

• misspelled token

• wrong syntax

• improper procedure call

• statements that cannot be reached

9

