Section: Parsing

Parsing: Deciding if $x \in \Sigma^*$ is in L(G) for some CFG G.

Consider the CFG G:

$$egin{aligned} \mathbf{S} &
ightarrow \mathbf{Aa} \ \mathbf{A} &
ightarrow \mathbf{AA} & | & \mathbf{ABa} & | & \lambda \ \mathbf{B} &
ightarrow \mathbf{BBa} & | & \mathbf{b} & | & \lambda \end{aligned}$$

Is ba in L(G)? Running time?

New grammar G' is:

$$egin{aligned} \mathbf{S} &
ightarrow \mathbf{A} \mathbf{a} \mid \mathbf{a} \ \mathbf{A} &
ightarrow \mathbf{A} \mathbf{A} \mid \mathbf{A} \mathbf{B} \mathbf{a} \mid \mathbf{A} \mathbf{a} \mid \mathbf{B} \mathbf{a} \mid \mathbf{a} \ \mathbf{B} &
ightarrow \mathbf{B} \mathbf{B} \mathbf{a} \mid \mathbf{B} \mathbf{a} \mid \mathbf{a} \mid \mathbf{b} \end{aligned}$$

Is ba in L(G)? Running time?

Top-down Parser:

• Start with S and try to derive the string.

$$S \to aS \mid b$$

• Examples: LL Parser, Recursive Descent

Bottom-up Parser:

• Start with string, work backwards, and try to derive S.

• Examples: Shift-reduce, Operator-Precedence, LR Parser

The function FIRST:

$$egin{aligned} \mathbf{G} = & (\mathbf{V}, \mathbf{T}, \mathbf{S}, \mathbf{P}) \ \mathbf{w}, \mathbf{v} \in & (\mathbf{V} \cup \mathbf{T})^* \ \mathbf{a} \in & \mathbf{T} \ \mathbf{X}, \mathbf{A}, \mathbf{B} \in & \mathbf{V} \ \mathbf{X}_I \in & (\mathbf{V} \cup \mathbf{T})^+ \end{aligned}$$

Definition: FIRST(w) = the set of terminals that begin strings derived from w.

If
$$w \stackrel{*}{\Rightarrow} av$$
 then
$$a \text{ is in FIRST(w)}$$
If $w \stackrel{*}{\Rightarrow} \lambda$ then
$$\lambda \text{ is in FIRST(w)}$$

To compute FIRST:

- 1. $FIRST(a) = \{a\}$
- 2. FIRST(X)
 - (a) If $X \to aw$ then a is in FIRST(X)
 - (b) IF $X \to \lambda$ then λ is in FIRST(X)
 - (c) If $X \to Aw$ and $\lambda \in FIRST(A)$ then Everything in FIRST(w) is in FIRST(X)

- 3. In general, FIRST($X_1X_2X_3...X_K$) =
 - \bullet FIRST(X₁)
 - \cup FIRST(X₂) if λ is in FIRST(X₁)
 - \cup FIRST(X₃) if λ is in FIRST(X₁) and λ is in FIRST(X₂)

• • •

- \cup FIRST(X_K) if λ is in FIRST(X₁) and λ is in FIRST(X₂) ... and λ is in FIRST(X_{K-1})
- $-\{\lambda\}$ if $\lambda \notin FIRST(X_J)$ for all J

Example:

$$egin{aligned} \mathbf{S} & \mathbf{a}\mathbf{S}\mathbf{c} & \mid \mathbf{B} \\ \mathbf{B} & \mathbf{b} & \mid \lambda \end{aligned}$$

Example

$$egin{aligned} \mathbf{S} &
ightarrow \mathbf{BCD} \mid \mathbf{aD} \ \mathbf{A} &
ightarrow \mathbf{CEB} \mid \mathbf{aA} \ \mathbf{B} &
ightarrow \mathbf{b} \mid \lambda \ \mathbf{C} &
ightarrow \mathbf{dB} \mid \lambda \ \mathbf{D} &
ightarrow \mathbf{cA} \mid \lambda \ \mathbf{E} &
ightarrow \mathbf{e} \mid \mathbf{fE} \end{aligned}$$

$$FIRST(S) =$$
 $FIRST(A) =$
 $FIRST(B) =$
 $FIRST(C) =$
 $FIRST(D) =$
 $FIRST(E) =$

Definition: FOLLOW(X) = set of terminals that can appear to the right of X in some derivation.

If
$$S \stackrel{*}{\Rightarrow} wAav$$
 then a is in $FOLLOW(A)$

To compute FOLLOW:

- 1. \$ is in FOLLOW(S)
- 2. If $A \to wBv$ and $v \neq \lambda$ then FIRST(v) - $\{\lambda\}$ is in FOLLOW(B)
- 3. IF $A \to wB$ OR $A \to wBv$ and λ is in FIRST(v) then FOLLOW(A) is in FOLLOW(B)
- 4. λ is never in FOLLOW

Example:

$$egin{aligned} \mathbf{S} &
ightarrow \mathbf{aSc} & \mid \mathbf{B} \\ \mathbf{B} &
ightarrow \mathbf{b} & \mid \lambda \end{aligned}$$

$$FOLLOW(S) =$$
 $FOLLOW(B) =$

Example:

$$egin{aligned} \mathbf{S} &
ightarrow \mathbf{BCD} \mid \mathbf{aD} \ \mathbf{A} &
ightarrow \mathbf{CEB} \mid \mathbf{aA} \ \mathbf{B} &
ightarrow \mathbf{b} \mid \lambda \ \mathbf{C} &
ightarrow \mathbf{dB} \mid \lambda \ \mathbf{D} &
ightarrow \mathbf{cA} \mid \lambda \ \mathbf{E} &
ightarrow \mathbf{e} \mid \mathbf{fE} \end{aligned}$$

$$FOLLOW(S) =$$
 $FOLLOW(A) =$
 $FOLLOW(B) =$
 $FOLLOW(C) =$
 $FOLLOW(D) =$