Section: LR Parsing

LR PARSING
LR (k) Parser

e bottom-up parser
e shift-reduce parser
e L means: reads input left to right

e R means: produces a rightmost
derivation

e k - number of lookahead symbols

LR parsing process

e convert CFG to PDA

e Use the PDA and lookahead
symbols

Convert CFG to PDA
The constructed NPDA:

e three states: s, q, f
start in state s, assume z on stack
e all rewrite rules in state s,
backwards
rules pop rhs, then push lhs
(s,lhs) € §(s,\,rhs)
This is called a reduce operation.
e additional rules in s to recognize
terminals
For each xe€ ¥, ge I', (s,xg) €
d(s,x,8)
This is called a shift operation.

e pop S from stack and move into
state q

e pop z from stack, move into f,
accept.

Example: Construct a PDA.

S — aSb
S — b

LR Parsing Actions

1. shift
transfer the lookahead to the stack

2. reduce
For X — w, replace w by X on the
stack

3. accept
input string is in language

4. error

input string is not in language

LR (1) Parse Table

e Columns:

terminals, $ and variables

e Rows:

state numbers: represent patterns
in a derivation

LR (1) Parse Table Example

1) S — aSb
2) S— b

a b| $ |S
s2|s3 1
acc
s2|s3 4
r2 r2
SO
rl rl

Ui W N = O

Definition of entries:

® s\ - shift terminal and move to
state N

e N - move to state N
e rN - reduce by rule number N
® acc - accept

e blank - error

state = 0
push(state)
read(symbol)
entry = T|[state,symbol]
while entry.action # accept do
if entry.action == shift then
push(symbol)
state = entry.state
push(state)
read(symbol)
else if entry.action == reduce then
do 2xsize rhs times {pop()}
state := top-of-stack()
push(entry.rule.lhs)
state = T[state,entry.rule.lhs]

push(state)
else if entry.action == blank then
error
entry = T|[state, symbol]
end while

if symbol # $ then error

Example:

Trace aabbb

0 Q

0 QO J U
< N

M QO

2 2 2 2 4 4
a a a a S S

2 2 2 2 2 2 2 1

a a a a a a a S

O 0 00 00 O O O

N &~
N QO

N =

N Q

n 3 <

To construct the LR(1) parse table:

e Construct a dfa to model the top of
the stack

e Using the dfa, construct an LR (1)
parse table

To Construct the DFA

e Add S’ — S

e place a marker “ ” on the rhs
S’ — .S

e Compute closure(S’ — S).
Def. of closure:

1. closure(A — v xy) = {A — v xy}
if x is a terminal.

2. closure(A — v xy) = {A — v xy}
U (closure(x — _w) for all w if x is
a variable.

® The closure(S’ — S) is state 0 and
“unprocessed”.

e Repeat until all states have been
processed

—unproc = any unprocessed state

— For each x that appears in
A—u xv do

* Add a transition labeled “x”

from state “unproc” to a new
state with production A—ux_ v

* The set of productions for the
new state are: closure(A—ux v)

« If the new state is identical to
another state, combine the
states Otherwise, mark the new
state as “unprocessed”

e Identify final states.

Example: Construct DFA

(0) S — S
(1) S — aSb
(2) S—b

10

Backtracking through the DFA
Consider aabbb

e Start in state 0.
e Shift “a” and move to state 2.
e Shift “a” and move to state 2.

e Shift “b” and move to state 3.
Reduce by “S — b”
Pop “b” and Backtrack to state 2.
Shift “S” and move to state 4.

e Shift “b” and move to state 5.
Reduce by “S — aSb”

Pop “aSb” and Backtrack to state
2.

Shift “S” and move to state 4.

e Shift “b” and move to state 5.
Reduce by “S — aSb”

Pop “aSb” and Backtrack to state
0.

11

Shift “S” and move to state 1.
e Accept. aabbb is in the language.

12

To construct LR(1) table from
diagram:

1. If there is an arc from statel to
state2

(a) arc labeled x is terminal or $
T|[statel, x] = sh state2

(b) arc labeled X is nonterminal
T[statel, X]| = state2

2. If statel 1s a final state with

X — wW_

For all a in FOLLOW (X),
T|[statel,a] = reduce by X — w

3. If statel is a final state with
S’ — S
T[statel,$] = accept

4. All other entries are error

13

Example: LR(1) Parse Table

(0) S — S
(1) S — aSb
(2) S—b

Here is the LR(1) Parse Table with
extra information about the stack
contents of each state.

Stack State| Terminals Variables

contents number| a | b | § S

(empty)

CUR W N =O

14

Actions for entries in LR (1) Parse
table T[state,symbol]

Let entry = T|[state,symbol].

e If symbol is a terminal or $

—If entry is “shift state?”
push lookahead and state: on the
stack

—If entry is “reduce by rule X —
W”
pop w and k states (k is the size
of w) from the stack.

—If entry is “accept”

Halt. The string is in the
language.

—If entry is “error”

Halt. The string is not in the
language.

15

e If symbol is nonterminal

We have just reduced the rhs of a
production X — w to a symbol.
The entry is a state number, call it
statei. Push T|[statei, X] on the
stack.

16

Constructing Parse Tables for CFG’s
with A-rules

A —)\ written as A —)_

Example

S — ddX
X — aX
X = A

Add a new start symbol and number
the rules:

(0) S> =S
(1) S - ddX
(2) X — aX
(3) X — A

Construct the DFA:

17

Construct the LR (1) Parse Table

a|d |$ S X

QY OUI WO

18

Possible Conflicts:

1. Shift /Reduce Conflict
Example:

A — ab
A — abcd

In the DFA:

A — ab_
A — ab_cd

2. Reduce/Reduce Conflict
Example:

A — ab
B — ab

In the DFA:

A — ab_
B — ab_

3. Shift /Shift Conflict

19

