
Section: LR Parsing

LR PARSING

LR(k) Parser

• bottom-up parser

• shift-reduce parser

• L means: reads input left to right

• R means: produces a rightmost
derivation

• k - number of lookahead symbols

LR parsing process

• convert CFG to PDA

• Use the PDA and lookahead
symbols

1



Convert CFG to PDA

The constructed NPDA:

• three states: s, q, f

start in state s, assume z on stack

• all rewrite rules in state s,
backwards

rules pop rhs, then push lhs

(s,lhs) ∈ δ(s,λ,rhs)

This is called a reduce operation.

• additional rules in s to recognize
terminals

For each x∈ Σ, g∈ Γ, (s,xg) ∈
δ(s,x,g)

This is called a shift operation.

• pop S from stack and move into
state q

• pop z from stack, move into f,
accept.

2



Example: Construct a PDA.

S → aSb
S → b

3



LR Parsing Actions

1. shift

transfer the lookahead to the stack

2. reduce

For X → w, replace w by X on the
stack

3. accept

input string is in language

4. error

input string is not in language

LR(1) Parse Table

• Columns:

terminals, $ and variables

• Rows:

state numbers: represent patterns
in a derivation

4



LR(1) Parse Table Example

1) S → aSb
2) S → b

a b $ S

0 s2 s3 1
1 acc
2 s2 s3 4
3 r2 r2
4 s5
5 r1 r1

Definition of entries:

• sN - shift terminal and move to
state N

• N - move to state N

• rN - reduce by rule number N

• acc - accept

• blank - error

5



state = 0
push(state)
read(symbol)
entry = T[state,symbol]
while entry.action 6= accept do

if entry.action == shift then
push(symbol)
state = entry.state
push(state)
read(symbol)

else if entry.action == reduce then
do 2∗size rhs times {pop()}
state := top-of-stack()
push(entry.rule.lhs)
state = T[state,entry.rule.lhs]
push(state)

else if entry.action == blank then
error

entry = T[state, symbol]
end while
if symbol 6= $ then error

6



Example:

Trace aabbb

5
b

3 4 4 5
b S S b

2 2 2 2 4 4
a a a a S S

2 2 2 2 2 2 2 1
a a a a a a a S

0 0 0 0 0 0 0 0 0
S: z z z z z z z z z
L: a a b b b b b $ $
A:

7



To construct the LR(1) parse table:

• Construct a dfa to model the top of
the stack

• Using the dfa, construct an LR(1)
parse table

To Construct the DFA

• Add S’ → S

• place a marker “ ” on the rhs

S’ → S

• Compute closure(S’ → S).

Def. of closure:

1. closure(A → v xy) = {A → v xy}
if x is a terminal.

2. closure(A → v xy) = {A → v xy}
∪ (closure(x → w) for all w if x is
a variable.

8



• The closure(S’ → S) is state 0 and
“unprocessed”.

• Repeat until all states have been
processed

– unproc = any unprocessed state

– For each x that appears in
A→u xv do

∗ Add a transition labeled “x”
from state “unproc” to a new
state with production A→ux v

∗ The set of productions for the
new state are: closure(A→ux v)

∗ If the new state is identical to
another state, combine the
states Otherwise, mark the new
state as “unprocessed”

• Identify final states.

9



Example: Construct DFA

(0) S’ → S
(1) S → aSb
(2) S → b

10



Backtracking through the DFA

Consider aabbb

• Start in state 0.

• Shift “a” and move to state 2.

• Shift “a” and move to state 2.

• Shift “b” and move to state 3.

Reduce by “S → b”

Pop “b” and Backtrack to state 2.

Shift “S” and move to state 4.

• Shift “b” and move to state 5.

Reduce by “S → aSb”

Pop “aSb” and Backtrack to state
2.

Shift “S” and move to state 4.

• Shift “b” and move to state 5.

Reduce by “S → aSb”

Pop “aSb” and Backtrack to state
0.

11



Shift “S” and move to state 1.

• Accept. aabbb is in the language.

12



To construct LR(1) table from
diagram:

1. If there is an arc from state1 to
state2

(a) arc labeled x is terminal or $

T[state1, x] = sh state2

(b) arc labeled X is nonterminal

T[state1, X] = state2

2. If state1 is a final state with

X → w

For all a in FOLLOW(X),
T[state1,a] = reduce by X → w

3. If state1 is a final state with

S’ → S

T[state1,$] = accept

4. All other entries are error

13



Example: LR(1) Parse Table

(0) S’ → S
(1) S → aSb
(2) S → b

Here is the LR(1) Parse Table with
extra information about the stack
contents of each state.

Stack State Terminals Variables
contents number a b $ S

(empty) 0
1
2
3
4
5

14



Actions for entries in LR(1) Parse
table T[state,symbol]

Let entry = T[state,symbol].

• If symbol is a terminal or $

– If entry is “shift statei”

push lookahead and statei on the
stack

– If entry is “reduce by rule X →
w”

pop w and k states (k is the size
of w) from the stack.

– If entry is “accept”

Halt. The string is in the
language.

– If entry is “error”

Halt. The string is not in the
language.

15



• If symbol is nonterminal

We have just reduced the rhs of a
production X → w to a symbol.
The entry is a state number, call it
statei. Push T[statei, X] on the
stack.

16



Constructing Parse Tables for CFG’s
with λ-rules

A → λ written as A → λ

Example

S → ddX
X → aX
X → λ

Add a new start symbol and number
the rules:

(0) S’ → S
(1) S → ddX
(2) X → aX
(3) X → λ

Construct the DFA:

17



Construct the LR(1) Parse Table

a d $ S X

0
1
2
3
4
5
6

18



Possible Conflicts:

1. Shift/Reduce Conflict

Example:

A → ab
A → abcd

In the DFA:

A → ab
A → ab cd

2. Reduce/Reduce Conflict

Example:

A → ab
B → ab

In the DFA:

A → ab
B → ab

3. Shift/Shift Conflict

19


