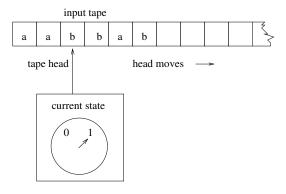
CPS 140 - Mathematical Foundations of CS Dr. Susan Rodger

Section: Finite Automata (Ch. 2) (handout)

Deterministic Finite Accepter (or Automata)

A DFA=(Q, Σ , δ , q_0 ,F)



where

Q is finite set of states Σ is tape (input) alphabet q_0 is initial state $F \subseteq Q$ is set of final states.

 $\delta: Q \times \Sigma \rightarrow Q$

Example: Create a DFA that accepts even binary numbers.

Transition Diagram:

$$M=(Q,\Sigma,\delta,q_0,F) =$$

Tabular Format

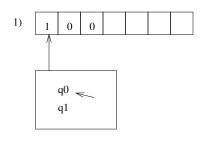
Example of a move: $\delta(q0,1)=$

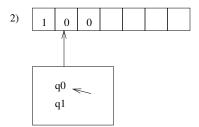
Algorithm for DFA:

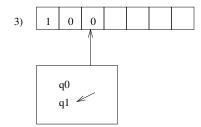
Start in start state with input on tape q = current state s = current symbol on tape while (s != blank) do $q = \delta(q,s)$ s = next symbol to the right on tape if $q \in F$ then accept

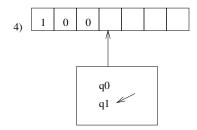
Example of a trace: 11010

Pictorial Example of a trace for 100:









Definition:

$$\delta^*(q,\lambda) = q$$

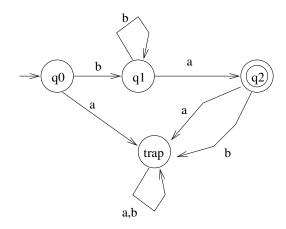
$$\delta^*(q, wa) = \delta(\delta^*(q, w), a)$$

Definition The language accepted by a DFA $M=(Q,\Sigma,\delta,q_0,F)$ is set of all strings on Σ accepted by M. Formally,

$$L(M) = \{ w \in \Sigma^* \mid \delta^*(q_0, w) \in F \}$$

Trap State

Example: $L(M) = \{b^n a \mid n > 0\}$



You don't need to show trap states! Any arc not shown will by default go to a trap state.

Example:

 $\mathcal{L} = \{ w \in \Sigma^* \mid \mathbf{w} \text{ has an even number of a's and an even number of b's} \}$

Example: Create a DFA that accepts even binary numbers that have an even number of 1's.

Definition A language is regular iff there exists DFA M s.t. L=L(M).

Chapter 2.2

Nondeterministic Finite Automata (or Accepter)

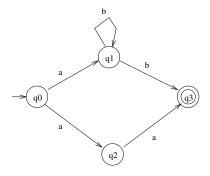
Definition

An NFA=(Q, Σ , δ , q_0 ,F)

where

Q is finite set of states Σ is tape (input) alphabet q_0 is initial state $F \subseteq Q$ is set of final states. $\delta: Q \times (\Sigma \cup \{\lambda\}) \to 2^Q$

Example



Note: In this example $\delta(q_0, a) =$

L=

Example

$$L = \{(ab)^n \mid n > 0\} \cup \{a^nb \mid n > 0\}$$

Definition $q_j \in \delta^*(q_i, w)$ if and only if there is a walk from q_i to q_j labeled w.

Example From previous example:

$$\delta^*(q_0, ab) =$$

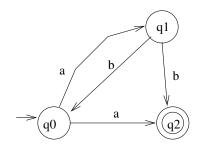
$$\delta^*(q_0, aba) =$$

Definition: For an NFA M, L(M)= $\{w \in \Sigma^* \mid \delta^*(q_0, w) \cap F \neq \emptyset\}$

The language accepted by nfa M is all strings w such that there exists a walk labeled w from the start state to final state.

2.3 NFA vs. DFA: Which is more powerful?

Example:



Theorem Given an NFA $M_N = (Q_N, \Sigma, \delta_N, q_0, F_N)$, then there exists a DFA $M_D = (Q_D, \Sigma, \delta_D, q_0, F_D)$ such that $L(M_N) = L(M_D)$.

Proof:

We need to define M_D based on M_N .

 $Q_D =$

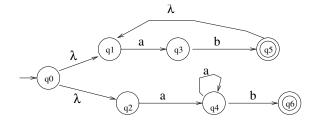
 $F_D =$

 δ_D :

Algorithm to construct M_D

- 1. start state is $\{q_0\} \cup \operatorname{closure}(q_0)$
- 2. While can add an edge
 - (a) Choose a state A={ $q_i,q_j,...q_k}$ with missing edge for $a\in \Sigma$
 - (b) Compute B = $\delta^*(q_i, a) \cup \delta^*(q_j, a) \cup \ldots \cup \delta^*(q_k, a)$
 - (c) Add state B if it doesn't exist
 - (d) add edge from A to B with label a
- 3. Identify final states
- 4. if $\lambda \in L(M_N)$ then make the start state final.

Example:



Minimizing Number of states in DFA

Why?

Algorithm

• Identify states that are indistinguishable These states form a new state

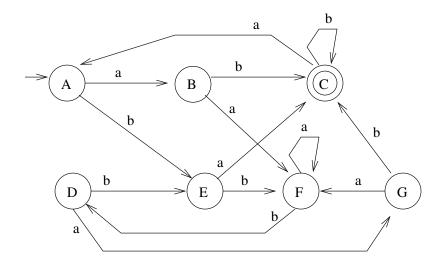
Definition Two states p and q are indistinguishable if for all $w \in \Sigma^*$

$$\begin{array}{l} \delta^*(q,w) \in F \Rightarrow \delta^*(p,w) \in F \\ \delta^*(p,w) \not \in F \Rightarrow \delta^*(q,w) \not \in F \end{array}$$

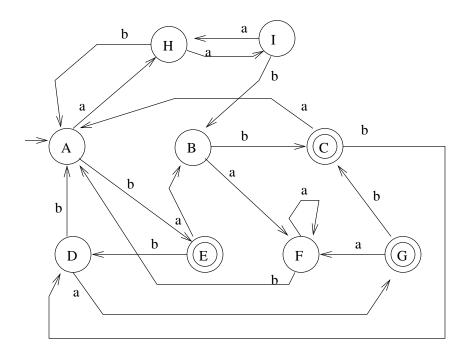
Definition Two states p and q are distinquishable if $\exists w \in \Sigma^*$ s.t.

$$\begin{array}{l} \delta^*(q,w) \in F \Rightarrow \delta^*(p,w) \not \in F \text{ OR} \\ \delta^*(q,w) \not \in F \Rightarrow \delta^*(p,w) \in F \end{array}$$

Example:



Example:



Properties and Proving - Problem 1

Consider the property Replace_one_a_with_b or R1awb for short. If L is a regular, prove R1awb(L) is regular.

The property R1awb applied to a language L replaces one a in each string with a b. If a string does not have an a, then the string is not in R1awb(L).

Properties and Proving - Problem 2

Consider the property Truncate_all_preceeding_b's or TruncPreb for short. If L is a regular, prove $\operatorname{TruncPreb}(L)$ is regular.

The property TruncPreb applied to a language L removes all preceding b's in each string. If a string does not have an preceding b, then the string is the same in TruncPreb(L).