Section: Finite Automata

Deterministic Finite Accepter (or Automata)

A DFA=
$$(\mathbf{Q}, \Sigma, \delta, q_0, \mathbf{F})$$

where

Q is finite set of states Σ is tape (input) alphabet q_0 is initial state $\mathbf{F} \subseteq \mathbf{Q}$ is set of final states. $\delta: \mathbf{Q} \times \Sigma \rightarrow \mathbf{Q}$

Example: DFA that accepts even binary numbers.

Transition Diagram:

$$\mathbf{M} = (\mathbf{Q}, \Sigma, \delta, q_0, \mathbf{F}) =$$

Tabular Format

$$egin{array}{c|c} 0 & 1 \\ q0 & \\ q1 & \end{array}$$

Example of a move: $\delta(q0,1)=$

Algorithm for DFA:

Start in start state with input on tape q = current state s = current symbol on tape while (s != blank) do $q = \delta(q,s)$ s = next symbol to the right on tape if $q \in F$ then accept

Example of a trace: 11010

Pictorial Example of a trace for 100:

Definition:

$$\delta^*(q, \lambda) = q$$
$$\delta^*(q, wa) = \delta(\delta^*(q, w), a)$$

Definition The language accepted by a DFA $M=(Q,\Sigma,\delta,q_0,F)$ is set of all strings on Σ accepted by M. Formally,

$$\mathbf{L}(\mathbf{M}) = \{ w \in \Sigma^* \mid \delta^*(q_0, w) \in F \}$$

Trap State

Example: $L(M) = \{b^n a \mid n > 0\}$

Example:

 $\mathbf{L} = \{ w \in \Sigma^* \mid \mathbf{w} \text{ has an even number of a's and an even number of b's} \}$

Example: DFA that accepts even binary numbers that have an even number of 1's.

Definition A language is regular iff there exists DFA M s.t. L=L(M).

Chapter 2.2

Nondeterministic Finite Automata (or Accepter)

Definition

An NFA=
$$(\mathbf{Q}, \Sigma, \delta, q_0, \mathbf{F})$$

where

Q is finite set of states

 Σ is tape (input) alphabet

 q_0 is initial state

 $F \subseteq Q$ is set of final states.

$$\delta: \mathbf{Q} \times (\Sigma \cup \{\lambda\}) \rightarrow 2^Q$$

Example

Note: In this example $\delta(q_0, a) =$ L=

Example

$$\mathbf{L} = \{(ab)^n \mid n > 0\} \cup \{a^nb \mid n > 0\}$$

Definition $q_j \in \delta^*(q_i, w)$ if and only if there is a walk from q_i to q_j labeled w.

Example From previous example:

$$\delta^*(q_0, ab) =$$

$$\delta^*(q_0, aba) =$$

Definition: For an NFA M,

$$L(\mathbf{M}) = \{ w \in \Sigma^* \mid \delta^*(q_0, w) \cap F \neq \emptyset \}$$

2.3 NFA vs. DFA: Which is more powerful?

Example:

Theorem Given an NFA

 $M_N=(Q_N, \Sigma, \delta_N, q_0, F_N)$, then there exists a DFA $M_D=(Q_D, \Sigma, \delta_D, q_0, F_D)$ such that $L(M_N)=L(M_D)$.

Proof:

We need to define M_D based on M_N .

$$Q_D =$$

$$F_D =$$

$$\delta_D$$
:

Algorithm to construct M_D

- 1. start state is $\{q_0\} \cup \mathbf{closure}(q_0)$
- 2. While can add an edge
 - (a) Choose a state $A = \{q_i, q_j, ...q_k\}$ with missing edge for $a \in \Sigma$
 - (b) Compute B = $\delta^*(q_i, a) \cup \delta^*(q_j, a) \cup \ldots \cup \delta^*(q_k, a)$
 - (c) Add state B if it doesn't exist
 - (d) add edge from A to B with label a
- 3. Identify final states
- 4. if $\lambda \in L(M_N)$ then make the start state final.

Example:

Minimizing Number of states in DFA Why?

Algorithm

• Identify states that are indistinguishable

These states form a new state

Definition Two states p and q are indistinguishable if for all $w \in \Sigma^*$

$$\delta^*(q, w) \in F \Rightarrow \delta^*(p, w) \in F$$

 $\delta^*(p, w) \notin F \Rightarrow \delta^*(q, w) \notin F$

Definition Two states p and q are distinguishable if $\exists w \in \Sigma^*$ s.t.

$$\delta^*(q, w) \in F \Rightarrow \delta^*(p, w) \notin F \mathbf{OR}$$

 $\delta^*(q, w) \notin F \Rightarrow \delta^*(p, w) \in F$

Example:

Example:

Properties and Proving - Problem 1
Consider the property
Replace_one_a_with_b or R1awb for
short. If L is a regular, prove
R1awb(L) is regular.

The property R1awb applied to a language L replaces one a in each string with a b. If a string does not have an a, then the string is not in R1awb(L).

Properties and Proving - Problem 2

Consider the property
Truncate_all_preceding_b's or
TruncPreb for short. If L is a regular,
prove TruncPreb(L) is regular.

The property TruncPreb applied to a language L removes all preceding b's in each string. If a string does not have an preceding b, then the string is the same in TruncPreb(L).